H.-G. Liu et al. / Tetrahedron Letters 44 (2003) 3137–3141
3141
between the C-2 carbonyl group and the C-1 carbonyl
group as well as the C-3 oxygen or chlorine atom
apparently rendered 8 and 9 in an unfavorable high
energy status. Since 8 and 9 can not undergo isomeriza-
tion like 3, they react instead with moisture in the air
via a nucleophilic 1,4-addition and then subsequent
elimination reaction to regain the planar structure and
intramolecular hydrogen bonding.
R.; Hamilton, G. A. Methods Enzymol. 1987, 142, 132–
138.
5. (a) Bycroft, B. W.; Chan, W. C.; Chhabra, S. R.; Tees-
dale-Spittle, P. H.; Hardy, P. M. J. Chem. Soc., Chem.
Commun. 1993, 776–777; (b) Bycroft, B. W.; Chan, W.
C.; Chhabra, S. R.; Hone, N. D. J. Chem. Soc., Chem.
Commun. 1993, 778–779.
6. Bannwarth, W.; Huebscher, J.; Barner, R. Bioorg. Med.
Chem. Lett. 1996, 6, 1525–1528.
In summary, the factors affecting the rate of the iso-
merization of enol esters derived from 2-acyl-1,3-cyclo-
hexanediones and its mechanism were investigated. The
results suggest the isomerization involves the intrinsic
keto-enol tautomerization, follows by intramolecular
attack of the enol oxygen to ester carbonyl group. The
driving force for this migration is likely that the intrin-
sic electrostatic repulsion between the 2-acyl oxygen
atom and the two 1,3-diketone oxygens caused defor-
mation of enol esters from planarity and resulted in
their high susceptibility to isomerization.
7. Lindblad, B.; Lindstedt, S.; Steen, G. Proc. Natl. Acad.
Sci. USA 1977, 74, 4641–4645.
8. Crystallographic data (excluding structure factors) for 4f
has been deposited with the Cambridge Crystallographic
Data Centre as supplementary publication numbers
CCDC 184437. Copies of the data can be obtained, free
of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [fax: +44 (0) 1223-336033 or
e-mail: deposit@ccdc.cam.ac.uk].
9. Montes, I. F.; Burger, U. Tetrahedron Lett. 1996, 37,
1007–1010.
10. All new compounds exhibited satisfactory 1H and 13C
NMR, IR, and low and high resolution mass spectro-
scopic data for the indicated structures. Representative
procedure for preparation of 5a–j: To a solution of
2-acetyl-3-hydroxy-2-cyclohexenone (2a, 100 mg, 0.65
mmol) in methylene chloride (5 mL) was added acetyl
chloride (127 mg, 1.62 mmol) and Et3N (177 mg, 1.75
mmol). After completion of the reaction (monitored by
TLC), water (5 mL) was added to the mixture and the
product was extracted twice with methylene chloride. The
combined organic extracts were dried over MgSO4,
filtered, and concentrated. The resulting crude product
was purified by column chromatography (EtOAc:
hexanes=4:6) to give a light brown liquid of 2-[1-
(methylcarbonyloxy)-1-ethenyl]-3-(methylcarbonyloxy)-2-
cyclohexen-1-one (5a) with a 97% yield. 1H NMR
(CDCl3, 300 MHz) l 5.20 (d, J=1.8 Hz, 1H), 4.94 (d,
J=1.8 Hz, 1H), 2.50 (t, J=6.3 Hz, 2H), 2.23 (s, 3H), 2.09
(s, 3H), 2.06 (quintet, J=6.3 Hz, 2H). 13C NMR (CDCl3,
75 MHz) l 196.0, 168.4, 167.6, 167.0, 143.8, 125.4, 108.4,
37.1, 28.9, 20.8, 20.8, 20.2. IR (KBr) w 1769, 1682, 1635
(CꢀO), 1208, 1158 (CH2ꢀC-O) cm−1. HRMS: calcd for
C12H14O5, 238.2420, found 238.2435.
Acknowledgements
The financial assistance provided by National Science
Council of Republic of China is gratefully acknowl-
edged. The authors also thank the reviewers for their
helpful suggestions and encouragement.
References
1. (a) Burton, J. D.; Gronwald, J. W.; Somers, D. A.;
Gengenbach, B. G.; Wyse, D. L.; Connelly, J. A.
Biochem. Biophys. Res. Commun. 1987, 148, 1039–1044;
(b) Rendina, A. R.; Felts, J. M.; Beaudoin, J. D.; Craig-
Kennard, A. C.; Look, L. L.; Parakos, S. L.; Hagenah, J.
A. Arch. Biochem. Biophys. 1988, 265, 219–225.
2. (a) Secor, J. Plant Physiol. 1994, 106, 1429–1433; (b)
Barta, I. C.; Boger, P. Pestic. Sci. 1995, 45, 286–287.
3. (a) Harwood, J. L. Trends Biochem. Sci. 1988, 13, 330–
331; (b) Knowles, J. R. Annu. Rev. Biochem. 1989, 58,
195–221; (c) Gronwald, J. W. Biochem. Soc. Trans. 1994,
22, 616–621; (d) Herbert, D.; Walker, K. A.; Price, L. J.;
Cole, D. J.; Pallett, K. E.; Ridley, S. M.; Harwood, J. L.
Pestic. Sci. 1997, 50, 67–71.
11. Wu, C. S.; Huang, J. L.; Sun, Y. S.; Yang, D. Y. J. Med.
Chem. 2002, 45, 2222–2228.
12. Huang, M. L.; Zou, J. W.; Yang, D. Y.; Ning, B. Z.;
Shang, Z. C.; Yu, Q. S. J. Mol. Struct. (Theochem.) 2002,
589–590, 321–328.
4. (a) Medes, G. Biochem. J. 1932, 26, 917–940; (b) Buck-
thal, D. J.; Roche, P. A.; Moorehead, T. J.; Forbes, B. J.