Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
COOMe
H
Chem. Lett., 1981, 10, 315-318; (d) J. ID. OI.I:K1i0m.1,0B39. /AC.9PCaCt0e3l2a6n2dB
R. F. Heck, J. Org. Chem., 1981, 46, 1067-1073; (e) S. Tsuboi,
T. Masuda and A. Takeda, J. Org. Chem., 1982, 47, 4478-4482;
(f) T.-a. Mitsudo, S.-W. Zhang, M. Nagao and Y. Watanabe, J.
Chem. Soc., Chem. Commun., 1991, 598-599; (g) C. Guo, X. Lu,
Tetrahedron Lett., 1992, 33, 3659-3662; (h) C. Fu and S. Ma,
Org. Lett., 2005, 7, 1707-1709; (i) M. Liu, P. Yang, M. K.
Karunananda, Y. Wang, P. Liu and K. M. Engle, J. Am. Chem.
Soc., 2018, 140, 5805-5813.
n-C6H13
1) H2SO4, MeOH, reflux, 7 h, 81%
2) 3-NO2-C6H4B(OH)2 (1.0 equiv.)
Pd(dppf)Cl2 (10 mol%)
NO2
K2CO3 (2 equiv.)
DMSO, 80 oC, 2 h, 80% yield
7
(E)-
3
For selected works on 1,3-Alkadien-2-yl carboxylic acids, see:
(a) H. Hoffmann, J. Rabe, Angew. Chem., Int. Ed. Engl., 1983,
22, 795-796; (b) J. Nokami, A. Maihara and J. Tsuji,
Tetrahedron Lett., 1990, 31, 5629-5630; (c) Y. Deng, X. Jin, and
S. Ma, J. Org. Chem., 2007, 72, 5901-5904.
CH2OH
H
COOH
H
n-C6H13
1) H2SO4, MeOH, reflux, 7 h, 81%
n-C6H13
2) DIBAL-H (2 equiv.), toluene
-78 oC 3 h to r.t. 4 h, 60% yield
4
5
S. Derien, J. C. Clinet, E. Dunach and J. Perichon, J. Organomet.
Chem., 1992, 424, 213-224.
Br
Br
8
(E)-
(a) R. W. Rosenthal, L. H. Schwartzman, N. P. Greco, R. Proper,
J. Org. Chem., 1963, 28, 2835-2838; (b) T. Nogi and J. Tsuji,
Tetrahedron, 1969, 25, 4099-4108; (c) K. Matsushita, T.
Komori, S. Oi and Y. Inoue, Tetrahedron Lett., 1994, 35, 5889-
5890; (d) F. Pascali and G. Chiusoli, J. Chem. Soc., Perkin
Transactions 1, 1997, 147-154; (e) W.-Y. Yu and H. Alper, J.
Org. Chem., 1997, 62, 5684-5687; (f) C. S. Consorti, G. Ebeling
and J. r. Dupont, Tetrahedron Lett., 2002, 43, 753-755; (g) C.
Huang, H. Qian, W. Zhang and S. Ma, Chem. Sci., 2019, 10,
5505-5512.
3l
(E)-
CHO
1) MeNHOMe•HCl (1.05 equiv.)
4-DMAP (0.05 equiv.)
DCC (1.05 equiv.)
Et3N (2.0 equiv.)
CH2Cl2, r.t., 24 h, 47%
H
n-C6H13
2) LiAlH4 (1.20 equiv.)THF
-78 oC, 0.5 h, 56% yield
Br
9
(E)-
Scheme 7. Synthetic applications of 1,3-alkadien-2-yl carboxylic acids
6
7
For the X-ray structure of (E)-4a, see: W.-F. Zheng, W. Zhang,
J. Huang, Y. Yu, H. Qian and S. Ma, Org. Chem. Front., 2018, 5,
1900-1904.
(a) K. T. Huh, A. Orita and H. Alper, J. Org. Chem., 1993, 58,
6956-6957; (b) B. El Ali, and H. Alper, J. Mol. Catal. A: Chem.,
1995, 96, 197-201.
In conclusion, a palladium-catalyzed efficient synthesis of 1,3-
alkadien-2-yl carboxylic acids through regioselective
hydrocarbonylation of the in situ generated conjugated 1,3-
enynes from readily available propargylic alcohols in the
presence of CO was established. (PhO)2POOH was found to be
the key additive for two steps in this transformation. Synthetic
potential leading to other useful building blocks was also
demonstrated. Further studies in this area are being conducted
in our laboratory.
8
9
W. Zhang, C. Huang, Y. Yuan and S. Ma, Chem. Commun., 2017,
53, 12430-12433.
The structure of (E)-3a was confirmed by single-crystal X-ray
diffraction analysis. CCDC 1582245 contains the
supplementary crystallographic data for compound (E)-3a.
Crystal data for compound (E)-3a: C15H18O2, MW = 230.29,
monoclinic, space group I2/a, final R indexes [I > 2σ(I)], R1 =
0.0719, wR2 = 0.2203; R indexes (all data), R1 = 0.0759, wR2 =
0.2259, a = 8.7690(2) Å, b = 17.0752(4) Å, c = 18.1342(3) Å, α
= 90o, β = 89.897(2)o, γ = 90o, V = 2715.27(10) Å3, T = 293(2) K,
Z = 8, reflections collected/unique 29293/2375 [Rint = 0.0773],
no. of observations [> 2σ(I)] 2120, parameters: 156.
ACKNOWLEDGMENTS
Financial supports from the National Natural Science
Foundation of China (Grant No. 21690063) are greatly
appreciated. We also thank Mr. Haibo Xu in this group for
reproducing the results for (E)-3d, (E)-3g, and (E)-3o presented
in Table 2.
10 The structure of (Z)-2q was determined by comparing with
literature: M. Callingham, B. M. Partridge, W. Lewis and H. W.
Lam, Angew. Chem. Int. Ed., 2017, 129, 16570-16574.
11 For a review on Pd-H involved mechanism, see: (a) A.
Brennführer, H. Neumann and M. Beller, ChemCatChem 2009,
1, 28-41; For a report, see: (b) D. L. Reger and D. G. Garza,
Organometallics, 1993, 12, 554-558.
Conflicts of interest
There are no conflicts to declare.
12 N. Miyaura, T. Yanagi and A. Suzuki, Synth. Commun., 1981,
11, 513-515.
13 (a) S. Nahm, S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815-
3818; (b) I. Iriarte, O. Olaizola, S. Vera, I. Gamboa, M. Oiarbide
and C. Palomo, Angew. Chem. Int. Ed., 2017, 56, 8860-8864.
Notes and references
1
For selected books, see: (a) W. Oppolzer, in Comprehensive
Organic Synthesis, ed. I. Fleming, Pergamon, Oxford, 1991, pp.
315-399; (b) W. R. Roush, in Comprehensive Organic Synthesis,
ed. I. Fleming, Pergamon, Oxford, 1991, pp. 513-550; (c) G.
Mehta and P. Rao, In The Chemistry of Dienes and Polyenes,
ed. Z. Rappoport, John Wiley & Sons: 1997, pp 361-467; (d) F.
Fringuelli and A. Taticchi, The Diels-Alder reaction: selected
practical methods. John Wiley & Sons: 2002.
2
For selective representative works on 2,4-alkadienoic acids,
see: (a) H. A. Dieck and R. F. Heck, J. Org. Chem., 1975, 40,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins