B. Hugon et al. / Tetrahedron Letters 44 (2003) 3927–3930
3929
Table 1. Yields obtained in the different steps from unsubstituted indole and 5-substituted indoles, and with maleimide and
N-methylmaleimide for the synthesis of the Michae¨l adducts (mp in °C)
Indole
Bromation
Coupling with pyrrole
Michae¨l adduct
NH
NCH3
Product Mp (°C) Yield
Product Mp (°C) Yield
Product Mp (°C) Yield
Product Mp (°C) Yield
(%)
(%)
(%)
(%)
5-H
1
2
3
4
5
65
83
6
216–218 83
10
67–69
90
11
142
89–94
92–102 79
81 96
89
5-NO2
5-OBn
5-Cl
191–194 91
89–92
84
92
65
61
7
8
9
178–182 69
223–227 72
12
14
16
103–107 68
138–144 56
163
13
15
17
82
5-Br
94
245
67
46
Table 2. Experimental conditions and yields for the cyclization of the Michae¨l adducts 10 and 11
Starting product Solvent
Catalyst
Temperature
Time of
Method for solvent elimination
Yield of
(°C)
reaction (h)
cyclization (%)
11
Ph2O
Ph2O
Pd/C 10%
Pd/C 10%
180
48
Distillation under reduced pressure
(5 mm Hg)
Filtration over silicagel
Evaporation under reduced pressure Degradation
Filtration over silicagel
Filtration over silicagel
30
16
10
11
10
11
10
180
132
200
200
118
48
48
8
7
3
Chlorobenzene Pd/C 10%
Nitrobenzene
Nitrobenzene
AcOH
Pd black
Pd black
Pd(OAc)2
72
89
Evaporation under reduced pressure Degradation
Table 3. Yields obtained in the cyclization of compounds 10–19 (mp in °C)
Substituent
Compounds
Yield (%)
Mp (°C)
Compounds
Yield (%)
Mp (°C)
H
OBn
Cl
Br
OH
1020
1222
1424
1626
1828
89
35
52
42
16
218–220
275
298–304
\300
1121
1323
1525
1727
1929
89
75
81
92
17
226–228
120
249
\300
192
\275
References
10. Yoshida, T.; Nishiyachi, M.; Nakashima, N.; Murase,
M.; Kotani, E. Chem. Pharm. Bull. 2002, 50, 872–876.
11. Piers, E.; Britton, R.; Andersen, R. J. J. Org. Chem.
2000, 65, 530–535.
12. Bocchi, V.; Palla, G. Synthesis 1982, 1096–1097.
13. Bocchi, V.; Palla, G. Tetrahedron 1984, 40, 3251–3256.
14. Barry, J. F.; Wallace, T. W.; Walshe, N. D. A. Tetra-
hedron 1995, 51, 12797–12806.
1. Berlinck, R. G. S.; Britton, R.; Piers, E.; Lim, L.;
Roberge, M.; Moreira da Rocha, R.; Andersen, R. J. J.
Org. Chem. 1998, 63, 9850–9856.
2. Roberge, M.; Berlinck, R. G. S.; Xu, L.; Anderson, H. J.;
Lim, L. Y.; Curman, D.; Stringer, C. M.; Friend, S. H.;
Davies, P.; Vincent, I.; Haggarty, S. J.; Kelly, M. T.;
Britton, R.; Piers, E.; Anderson, R. J. Cancer Res. 1998,
58, 5701–5706.
15. Pindur, U.; Kim, Y.-S.; Schollmeyer, D. J. Heterocyclic
Chem. 1994, 31, 377–386.
3. Smits, V. A. J.; Medema, R. H. Biochim. Biophys. Acta
16. Bergman, J.; Janosik, T.; Yudina, L.; Desarbre, E.; Lid-
gren, G.; Venemalm, L. Tetrahedron 2000, 56, 1911–1916.
17. Spectral data of 10: IR (KBr) wCꢀO 1700, 1780 cm−1, wNH
2001, 1519, 1–12.
4. Luo, Y.; Rockow-Magnone, S. K.; Kroeger, P. E.; Frost,
L.; Chen, Z.; Han, E. K.-H.; Ng, S.-C.; Simmer, R. L.;
Giranda, V. L. Neoplasia 2001, 3, 411–419.
5. Shapiro, I. G.; Harper, J. W. J. J. Clin. Invest. 1999, 104,
1645–1653.
6. Che`ne, P. Curr. Med. Chem. Anti-Cancer Agents 2001, 1,
151–161.
7. Sampath, D.; Plunkett, W. Curr. Opin. Oncol. 2001, 13,
484–490.
3100–3500 cm−1
.
HRMS (FAB+) (M+) calcd for
C16H13N3O2: 279.1007; found: 279.1004. 1H NMR (400
MHz, DMSO-d6): l 2.80 (1H, dd, J1=18.0 Hz, J2=5.0
Hz), 3.32 (1H, dd, J1=18.0 Hz, J2=10.0 Hz), 4.56 (1H,
dd, J1=9.5 Hz, J2=5.0 Hz), 6.25 (1H, br s), 6.47 (1H, br
s), 7.03 (2H, m), 7.14 (1H, d, J=7.5 Hz), 7.22 (1H, d,
J=8.0 Hz), 7.42 (1H, d, J=8.0 Hz), 11.12 (2H, s, NH),
11.50 (1H, s, NH). 13C NMR (100 MHz, DMSO-d6): l
37.2 (CH2), 39.0 (CH), 106.0, 122.9, 126.2, 130.6, 135.9
(C quat. arom.), 108.7, 108.9, 111.4, 117.5, 119.2, 119.7,
121.3 (C tert. arom.), 178.2, 180.3 (CꢀO).
8. Molinari, M. Cell. Prolif. 2000, 33, 261–274.
9. Camargo, A. J.; Oliveira, J. H. H. L.; Trsic, M.; Berlinck,
R. G. S. J. Mol. Struct. 2001, 559, 67–77.