Published on Web 10/14/2005
Nano-Segregated Polymeric Film Exhibiting High Ionic
Conductivities
Kenji Kishimoto,† Tomoyuki Suzawa,† Tomoki Yokota,† Tomohiro Mukai,‡
Hiroyuki Ohno,‡ and Takashi Kato*,†
Department of Chemistry and Biotechnology, School of Engineering, The UniVersity of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Department of Biotechnology, Tokyo UniVersity
of Agriculture and Technology, Nakacho, Koganei, Tokyo 184-8588, Japan
Received July 23, 2005; E-mail: kato@chiral.t.u-tokyo.ac.jp
Abstract: Nanostructures can be used for the fabrication of highly functional materials transporting ions
and charges. We demonstrate a new design strategy for polymeric higher ion-conductors. Phase-segregated
layers of alternating mobile tetra(ethylene oxide)s (TEOs) and rigid aromatic cores where the TEO moieties
are grafted from aromatic layers have been shown to be efficient to transport lithium triflate. Such segregated
structures at the nanometer scale (nano-segregated structures) were prepared by in-situ photopolymerization
of an aligned methacrylate liquid crystalline monomer comprising a terphenyl rigid rod mesogen having a
TEO terminal chain. The ion-conductive TEO moiety remains in the highly mobile state even after
polymerization, which is indicated by its low glass transition temperature (-45 °C). This nanostructured
film exhibits an ionic conductivity parallel to the layer of 10-3 S cm-1 at room temperature. The highest
ionic conductivity is in the level of 10-2 S cm-1 observed at 150 °C. The anisotropic ionic conductivities
have been observed for the nano-segregated film.
Introduction
Self-organized nanostructures of liquid crystals can be applied
to anisotropically functional materials.1-29 Supramolecular as-
sembly of molecules and nano-segregation can be used for the
† The University of Tokyo.
‡ Tokyo University of Agriculture and Technology.
(1) (a) Special section of liquid crystals: Curr. Opin. Solid State Mater. Sci.
2002, 6, 513-587. (b) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.;
Schenning, A. P. H. J. Chem. ReV. 2005, 105, 1491-1546. (c) van Nostrum,
C. F.; Nolte, R. J. M. Chem. Commun. 1996, 2385-2392. (d) Stupp, S. I.;
LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz,
A. Science 1997, 276, 384-389. (e) Side Chain Liquid Crystal Polymer;
McArdle, C. B., Ed.; Blackie: London, 1989. (f) Lehn, J. M. Makromol.
Chem. Macromol. Symp. 1993, 36, 1-17. (g) Kato, T.; Fre´chet, J. M. J.
Macromol. Symp. 1995, 98, 311-326.
(2) Kato, T. Science 2002, 295, 2414-2418.
(3) Ikkala, O.; ten Brinke, G. Chem. Commun. 2004, 2131-2137.
(4) Pollino, J. M.; Weck, M. Chem. Soc. ReV. 2005, 34, 193-207.
(5) Saez, I. M.; Goodby, J. W. J. Mater. Chem. 2005, 15, 26-40.
(6) Tschierske, C. J. Mater. Chem. 2001, 11, 2647-2671.
(7) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. ReV. 2001, 101, 3869-3892.
(8) Barbera´, J.; Puig, L.; Romero, P.; Serrano, J. L.; Sierra, T. J. Am. Chem.
Soc. 2005, 127, 458-464.
Figure 1. Design strategy for higher ion-conductive polymeric films. (a)
Liquid crystalline ion-conductive nanostructured polymers having oligo-
(ethylene oxide) chains (indicated in red) as spacer units of the side chains.
(b) Comb-shaped polymers having flexible ion-conductive oligo(ethylene
oxide) side chains (in red). (c) Combined design of the advantages of (a)
and (b): a new type of liquid crystalline nanostructured ion-conductor. The
nanolayers consist of liquidlike ion-conductive (in red) and rigid aromatic
mesogenic (in blue) domains.
(9) McCubbin, J. A.; Tong, X.; Wang, R.; Zhao, Y.; Snieckus, V.; Lemieux,
R. P. J. Am. Chem. Soc. 2004, 126, 1161-1167.
(10) Kato, T.; Matsuoka, T.; Nishii, M.; Kamikawa, Y.; Kanie, K.; Nishimura,
T.; Yashima, E.; Ujiie, S. Angew. Chem., Int. Ed. 2004, 43, 1969-1972.
(11) Simpson, C. D.; Wu, J.; Watson, M. D.; Mu¨llen, K. J. Mater. Chem. 2004,
14, 494-504.
(12) Bushey, M. L.; Hwang, A.; Stephens, P. W.; Nuckolls, C. Angew. Chem.,
Int. Ed. 2002, 41, 2828-2831.
preparation of such anisotropic materials.1-10 These materials
have great potential as low-dimensional conductors of elec-
trons2,11-15 and ions2,16-29 due to their phase-segregated struc-
tures. Macroscopic alignment of phase-segregated ordered
nanostructures consisting of conductive and insulating parts is
essential for efficient transportation. However it was not easy
(13) Boden, N.; Bushby, R. J.; Clements, J. J. Chem. Phys. 1993, 98, 5920-
5931.
(14) Messmore, B. W.; Hulvat, J. F.; Sone, E. D.; Stupp, S. I. J. Am. Chem.
Soc. 2004, 126, 14452-14458.
(15) Smith, R. C.; Fischer, W. M.; Gin, D. L. J. Am. Chem. Soc. 1997, 119,
4092-4093.
(16) Percec, V.; Heck, J. A.; Tomazos, D.; Ungar, G. J. Chem. Soc., Perkin
Trans. 2 1993, 2381-2388.
(17) Percec, V.; Tomazos, D. J. Mater. Chem. 1993, 3, 633-642.
(18) Yoshio, M.; Mukai, T.; Kanie, K.; Yoshizawa, M.; Ohno, H.; Kato, T.
AdV. Mater. 2002, 14, 351-354.
(19) Yoshio, M.; Mukai, T.; Ohno, H.; Kato, T. J. Am. Chem. Soc. 2004, 126,
994-995.
9
15618
J. AM. CHEM. SOC. 2005, 127, 15618-15623
10.1021/ja0549594 CCC: $30.25 © 2005 American Chemical Society