Chemistry Letters Vol.34, No.5 (2005)
733
any hazardous products. In summary, this procedure is simple,
environment-friendly.
We thank the Natural Science Foundation of the China
(No. 20372057), the Key Laboratory of Biotechnology for
Medicinal Plants of Jiangsu Province (No. 01AXL 14), the
Open-end Fund of the Key Experiments of Organic Synthesis,
Jiangsu Province (S8109111) for finanical support.
References and Notes
1
2
3
F. Krohnke, Synthesis, 1976, 1.
¨
F. Neve, A. Grispini, and S. Campagna, Inorg. Chem., 36, 6150 (1997).
B. Olenyuk, J. A. Whiteford, A. Frechtenkotter, and P. J. Stang, Nature,
398, 796 (1999).
¨
4
5
S. Shimizu, N. Abe, N. Goto, T. Niwa, and A. Iguchi, Jpn. Patent,
JP 01261367A (1998).
S. Peter, H. Gerhard, H. Elisabeth, K. Ralf, K. Hartmann, H. Albercht,
G. Norbert, W. Helmut, W. Karl-Otto, and M. Uif, U. S. Patent, US 5
733850 (1998).
Figure 1. X-ray structures of 1s.
(Figure 1).17
6
7
8
R. S. Tewari and N. K. Mishra, Croat. Chem. Acta, 54, 241 (1981).
R. S. Tewari and A. K. Dubey, J. Chem. Eng. Data, 25, 91 (1980).
N. K. Mishra, K. S. Mishra, and H. C. Srivastara, Indian J. Agric. Chem.,
21, 91 (1988).
R. K. Singhal and N. K. Mishra, Indian J. Chem., Sect. B, 24B, 1079
(1985).
However, when using aldehyde and two different ketones as
the starting material, we obtained mixture including two differ-
ent chalcone, which are primary products, and a little amount of
unsymmetrical triarylpyridine.
9
10 T. Kobayashi and M. Nitta, Chem. Lett., 1986, 1549.
11 S. Sukhwal and B. L. Verma, Indian J. Heterocycl. Chem., 31, 287
(1994).
12 A. S. Kiselyor, Tetrahedron Lett., 36, 9297 (1995).
13 P. Francisco, M. Ana, R. Ochoa, and O. Julen, Tetrahedron Lett., 37,
4577 (1996).
14 W. V. C. Gareth and L. R. Collin, Chem. Commun., 2000, 2199.
15 S. Tu, C. Miao, F. Fang, F. Youjian, T. Li, Q. Zhuang, X. Zhang, S. Zhu,
and D. Shi, Bioorg. Med. Chem. Lett., 14, 1533 (2004).
This method is applied to aromatic and heteroaromatic
ketones. Furthermore, this versatile method is also suitable for
the synthesis of 1-indenone and ꢁ-tetralone. 11-aryl-10H,12H-
diindeno[1,2-b:20,10-e]pyridine 2 and 7-aryl-5,6,8,9-tetrahydro-
dibenzo[c,h]acridine 3 were obtained with good yields (Scheme
2). The results are listed in Table 2.
Here, we disclose a facile method to synthesize a wide range
of symmetrical triarylpyridines. This methodology is superior to
the reported methods from the view of green chemistry. The sig-
nificance of our approach relates to the elimination of toxic start-
ing materials, as well as its simplicity and avoiding the release of
16 A Typical procedure for triarylpyridine: A dry flask (25 mL) was charg-
ed with a solution of the appropriate aldehyde (2 mmol), aromatic ketone
(4 mmol), NH4OAc (2 mmol) in a microwave oven. The flask was then
connected with refluxing equipment. After irradiation for 5–9 min (irra-
diation sequences were interrupted with a cooling perios in between), the
reaction mixture was cooled and the crude solid precipitated from the so-
lution was filtered and washed with 95% ethanol to afford the products.
Analytical data of compound 1j: IR (neat): 3038, 1609, 1598, 1580,
Ar
O
( )n
( )n
1543, 820 cmꢂ1 1H NMR (400 MHz, DMSO-d6): ꢃ 2.39 (6H, s, 2
.
NH4OAc
MWI
CH3), 3.85 (3H, s, OCH3), 7.11 (2H, d, J ¼ 8:0 Hz, ArH), 7.35 (2H,
d, J ¼ 8:0 Hz, ArH), 8.01 (2H, d, J ¼ 8:0 Hz, ArH), 8.08 (2H, s, Pyri-
dine–CH), 8.21 (2H, d, J ¼ 8:0 Hz, ArH). compound 1s: IR (neat):
3135, 3105, 3061, 3008, 2829, 1599, 1512, 1458, 1421, 1342, 1299,
+
ArCHO
N
( )n
2: n = 1, 3:n = 2
1244, 1171, 1103, 1033, 880, 801, 753 cmꢂ1 1H NMR (400 MHz,
.
DMSO-d6): ꢃ 3.86 (6H, s, 2OCH3), 7.10–7.12 (4H, m, ArH), 7.22–
7.24 (2H, m, ArH), 7.51–7.58 (2H, m, ArH), 8.08 (2H, s, Pyridine–
CH), 8.08–8.11 (1H, m, Indole–CH), 8.24–8.27 (4H, m, Indole–CH),
11.75 (1H, s, Indole–NH). Compound 2f: IR (neat): 3041, 1612, 1560,
Scheme 2.
Table 2. The synthesis of 2, 3
1517, 858, 831, 749 cmꢂ1 1H NMR (400 MHz, DMSO-d6): ꢃ 3.88
.
Entry
Ar
Yield/%
Mp (ꢁC).Lit.
(3H, s, OCH3), 3.96 (4H, s, 2CH2), 7.14 (2H, d, J ¼ 8:0 Hz, ArH),
7.42–7.52 (4H, m, ArH), 7.63 (2H, d, J ¼ 7:2 Hz, ArH), 7.76 (2H, d,
J ¼ 8:0 Hz, ArH), 8.11 (2H, d, J ¼ 7:2 Hz, ArH). Compound 3a: IR
2a
2b
2c
2d
2e
2f
2g
2h
3a
3b
3c
3d
3e
3f
C6H5
4-OH-3-CH3OC6H3
4-ClC6H4
3,4-OCH2OC6H3
4-BrC6H4
93
92
95
93
96
93
94
90
91
90
90
92
93
95
95
>300 (298)1
>300
>300
>300
>300
251.8–252.2
>300
>300
292.0–292.8
147.6–148.9
167.5–168.9
183.6–184.4
193.0–195.6
260.0–262.0
279.6–280.0
(neat): 3446, 3028, 1594, 1542, 1511, 766, 750, 736 cmꢂ1 1H NMR
.
(400 MHz, DMSO-d6) ꢃ 2.60–2.87 (8H, m, 4CH2), 3.81 (3H, s, OCH3),
6.68 (1H, d, J ¼ 8:4 Hz, ArH), 6.84 (s, 1H, ArH), 6.92 (1H, d,
J ¼ 8:4 Hz, ArH), 7.27–7.42 (6H, m, ArH), 8.42 (2H, d, ArH), 9.17
(1H, s, OH).
4-CH3OC6H4
3,4-Cl2C6H3
3-indole
17 Crystal data for 1s: Empirical formula C27H22N2O2, Mr ¼ 406:47,
ꢀ
ꢁ
T ¼ 193ð2Þ K, Triclinic, space group P1, a ¼ 8:7438ð13Þ A, b ¼
16:341ð2Þ A, c ¼ 16:460ð2Þ A, ꢁ ¼ 68:442ð11Þꢁ, ꢂ ¼ 76:059ð12Þꢁ,
ꢁ
ꢁ
ꢄ ¼ 75:827ð12Þ , V ¼ 2090:7ð5Þ A , Z ¼ 4, Dcalcd ¼ 1:291 Mg/cm3,
ꢁ
ꢁ 3
4-OH-3-CH3OC6H3
3,4-Cl2C6H3
C6H5
4-CH3OC6H4
3,4-OCH2OC6H3
4-ClC6H4
ꢂ1
ꢁ
ꢅðMo KꢁÞ ¼ 0:71073 A, ꢆ ¼ 0:082 mm
,
Fð000Þ ¼ 856, 3:05ꢁ
<
ꢇ < 27:48ꢁ, R ¼ 0:0741, wR ¼ 0:1445, S ¼ 1:160, Largest diff. Peak
ꢁ 3
and hole: 0.248 and ꢂ0:207 e/A .
18 R. Lombard and J. P. Stephan, Bull. Soc. Chim. Fr., 1958, 1458.
19 G. N. Dorofeenko, E. P. Olekhnovich, and L. I. Laukhina, Zh. Org.
Khim., 7, 1296 (1971).
20 T. Mutai, J. D. Cheon, S. Arita, and K. Araki, J. Chem. Soc., Perkin
Trans. 2, 2001, 1045.
3g
4-BrC6H4
Published on the web (Advance View) April 22, 2005; DOI 10.1246/cl.2005.732