10.1002/anie.201706794
Angewandte Chemie International Edition
COMMUNICATION
Keywords: diphosphine • carbonylation • Markovnikov-selective
• alkyne • ketone
[1]
a) P. W. N. M. van Leeuwen, Homogeneous Catalysis, Kluwer
Academic Publishers, Dordrecht, 2004; b) J. F. Hartwig,
Organotransition Metal Chemistry: From Bonding to Catalysis,
University Science Books: Sausalito, CA., 2010; c) M. Beller, A.
Renken, R. A. van Santen, Catalysis: From Principles to Applications,
Wiley-VCH, Weinheim, 2012; d) B. Cornils, W. A. Herrmann, M. Beller,
R. Paciello, Applied Homogeneous Catalysis with Organometallic
Compounds: A Comprehensive Handbook in Four Volumes, 3rd Edition,
Wiley-VCH, Weinheim, 2017.
[2]
For selected examples, see: a) A. F. Littke, G. C. Fu, Angew. Chem. Int.
Ed. 1998, 37, 3387-3388; Angew. Chem. 1998, 110, 3586-3587; b) D.
W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120,
9722-9723; c) C. Zhang, J. Huang, M. L. Trudell, S. P. Nolan, J. Org.
Chem. 1999, 64, 3804-3805; d) Q. Shelby, N. Kataoka, G. Mann, J.
Hartwig, J. Am. Chem. Soc. 2000, 122, 10718-10719; e) A. Zapf, A.
Ehrentraut, M. Beller, Angew. Chem. Int. Ed. 2000, 39, 4153-4155;
Angew. Chem. 2000, 112, 4315-4317; f) C. M. So, Z. Zhou, C. P. Lau,
F. Y. Kwong, Angew. Chem. Int. Ed. 2008, 47, 6402-6406; Angew.
Chem. 2008, 120, 6502-6506; g) R. J. Lundgren, B. D. Peters, P. G.
Alsabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 4071-4074;
Angew. Chem. 2010, 122, 4165-4168; h) K. Wu, A. G. Doyle, Nat.
Chem. 2017, doi:10.1038/nchem.2741.
Scheme 5. Synthetisis of substituted cyclopentanones in one-pot. [a] at 90 o
in step 1. [b] with 10 mol% p-TsOH instead of HOTf in step 2.
C
[3]
For selected examples, see: a) P. C. J. Kamer, P. W. N. M. van
Leeuwen, J. N. H. Reek, Acc. Chem. Res. 2001, 34, 895-904; b) C.
Jimenez Rodriguez, D. F. Foster, G. R. Eastham, D. J. Cole-Hamilton,
Chem. Commun. 2004, 1720-1721; c) T. J. Korstanje, J. Ivar van der
Vlugt, C. J. Elsevier, B. de Bruin, Science 2015, 350, 298-302; d) R.
Adam, J. R. Cabrero-Antonino, A. Spannenberg, K. Junge, R. Jackstell,
M. Beller, Angew. Chem. Int. Ed. 2017, 56, 3216-3220; Angew. Chem.
2017, 129, 3264-3268; e) K. Dong, X. Fang, S. Guelak, R. Franke, A.
Spannenberg, H. Neumann, R. Jackstell, M. Beller, Nat. Commun.
2017, 8, 14117; f) K. Dong, R. Sang, X. Fang, R. Franke, A.
Spannenberg, H. Neumann, R. Jackstell, M. Beller, Angew. Chem., Int.
Ed. 2017, 56, 5267-5271; Angew. Chem. 2017, 129, 5351-5355; g) J.
Liu, Z. Han, X. Wang, F. Meng, Z. Wang, K. Ding, Angew. Chem. Int.
Ed. 2017, 56, 5050-5054; Angew. Chem. 2017, 129, 5132-5136.
a) C. A. Tolman, Chem. Rev. 1977, 77, 313-348; b) P. W. N. M. van
Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev. 2000,
100, 2741-2770; c) M.-N. Birkholz, Z. Freixa, P. W. N. M. van Leeuwen,
Chem. Soc. Rev. 2009, 38, 1099-1118.
Scheme 6. Synthetisis of γ-keto ester.
In summary, we developed the first palladium catalyst
system for a Markovnikov-selective carbonylation of alkynes with
heteroarenes. By applying the novel ligand L1 (bis(2-
(diphenylphosphanyl)-1H-pyrrol-1-yl)methane), a wide range of
unactivated alkynes and heteroarenes as well as other
nucleophiles, such as alcohol, phenol, amine and amide, are
efficiently transformed into the corresponding branched α,β-
unsaturated products in good yields and often with high
regioselectivity. The general applicability of this methodology is
demonstrated by “one-pot” synthesis of polycyclic ring products.
In view of the easy availability of the substrates, the efficiency,
and the good regioselectivity, this novel catalyst system is
expected to complement the current methods for carbonylations
in homogenous catalysis and organic synthesis.
[4]
[5]
For selected examples, see: a) M. Kranenburg, Y. E. M. van der Burgt,
P. C. J. Kamer, P. W. N. M. van Leeuwen, K. Goubitz, J. Fraanje,
Organometallics 1995, 14, 3081-3089; b) J. P. Wolfe, in Encyclopedia
of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001; c) A.
Lumbroso, P. Koschker, N. R. Vautravers, B. Breit, J. Am. Chem. Soc.
2011, 133, 2386-2389; d) H. Li, K. Dong, H. Neumann, M. Beller,
Angew. Chem. Int. Ed. 2015, 54, 10239-10243; Angew. Chem. 2015,
127, 10377-10381; e) X. Fang, P. Yu, B. Morandi, Science 2016, 351,
832-836.
[6]
For selected examples, see: a) A. Zapf, R. Jackstell, F. Rataboul, T.
Riermeier, A. Monsees, C. Fuhrmann, N. Shaikh, U. Dingerdissen, M.
Beller, Chem. Commun. 2004, 38-39; b) A. Millet, P. Larini, E. Clot, O.
Baudoin, Chem. Sci. 2013, 4, 2241-2247; c) S. Dupuy, K.-F. Zhang, A.-
S. Goutierre, O. Baudoin, Angew. Chem. Int. Ed. 2016, 55, 14793-
14797; Angew. Chem. 2016, 128, 15013-15017; d) H. Li, K. Dong, H.
Jiao, H. Neumann, R. Jackstell, M. Beller, Nat. Chem. 2016, 8, 1159-
1166; e) J. Liu, H. Li, A. Spannenberg, R. Franke, R. Jackstell, M.
Beller, Angew. Chem., Int. Ed. 2016, 55, 13544-13548; Angew. Chem.
2016, 128, 13742-13746; f) X. Qiu, M. Wang, Y. Zhao, Z. Shi, Angew.
Chem. Int. Ed. 2017, 56, 7233-7237; Angew. Chem. 2017, 129, 7339-
7343.
Acknowledgements
We are grateful for the financial support from Evonik Industries
AG. J.L. thanks the Chinese Scholarship Council for financial
support. We also thank the analytical department in Leibniz-
Institute for Catalysis at the University of Rostock (LIKAT) for
their excellent technical and analytical support.
This article is protected by copyright. All rights reserved.