Organic Letters
Letter
metrical products being observed and the geometric integrity of
the E alkene was maintained. We also examined the vinyl−vinyl
coupling variant as this can lead to erosion of alkene geometry.
Gratifyingly, we found that 1-iodohex-1-ene could be coupled
in the Hiyama step to provide a single geometric isomer of
diene 4k.
We also investigated the selective formation of unsym-
metrical trisubstituted stilbenes. First, we performed the
hydrosilylation of propynyl MIDA ester 5 which proceeded
in excellent yield and produced a single regio- and geometric
isomer of the methyl-substituted silane 6 (eq 5). The addition
functionality and provides products as a single regio and
geometric isomer. This is the first report of a bench stable silyl
vinylbornic ester which can be used in a bidirectional coupling
strategy. The applications of this method are currently being
explored in total synthesis.
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures, full characterization of all
compounds reported, and copies of NMR spectra (1H and
13C). This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
appears to be directed by sterics with the large size of the
MIDA boronic ester dictating the formation of 6 as a single
isomer.21 With 6 in hand, we then performed the same Suzuki−
Hiyama protocol which was utilized in the unsymmetrical case
(Scheme 3). Once again, the reaction proceeded well and
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge Queen’s University Belfast, DEL
(studentship to M.G.M.) and Eli Lilly (CASE award to C.A.M.)
for support.
Scheme 3. Synthesis of Trisubstituted Olefins
REFERENCES
■
(1) Likhtenshtein, G. Stilbenes. Applications in Chemistry, Life Sciences
and Materials Science; Wiley-VCH Verlag: Weinheim, 2010.
(2) (a) Geahlen, R. L.; McLaughlin, J. L. Biochem. Biophys. Res.
Commun. 1989, 165, 241. (b) Swanson-Mungerson, M.; Ikeda, M.;
Lev, L.; Longnecker, R.; Portis, T. J. Antimicrob. Chemother. 2003, 52,
152. (c) Ferrer, P.; Asensi, M.; Segarra, R.; Ortega, A.; Benlloch, M.;
Obrador, E.; Varea, M. T.; Asensio, G.; Jorda,
́
L.; Estrala, J. M.
Neoplasia 2005, 7, 37. (d) Remsberg, C. M.; Yanez, J. A.; Ohgami, Y.;
́
̃
Vega-Villa, K. R.; Rimando, A. M.; Davies, N. M. Phytother. Res. 2008,
22, 169. (e) Gastaminza, P.; Whitten-Bauer, C.; Chisari, F. V. Proc.
Nat. Acad. Sci. U.S.A. 2010, 107, 291. (f) Cottart, C.-H.; Nivet-
Antoine, V.; Beaudeux, J.-L. Mol. Nutr. Food Res. 2014, 58, 1389.
(3) Meier, H. Angew. Chem., Int. Ed. 1992, 31, 1399.
(4) Lo, S.-C.; Burn, P. L. Chem. Rev. 2007, 107, 1097.
(5) Soomro, S. A.; Benmouna, R.; Berger, R.; Meier, H. Eur. J. Org.
Chem. 2005, 3586.
(6) (a) Iakobson, G.; Beier, P. Beilstein J. Org. Chem. 2012, 8, 1185.
(b) Dias, L. C.; Meira, P. R. R. J. Org. Chem. 2005, 70, 4762.
(c) Kretzcshmann, H.; Meier, H. Tetrahedron Lett. 1991, 32, 5059.
(7) (a) Ketcham, R.; Martinelly, L. J. Org. Chem. 1962, 27, 4666.
(b) Siergrist, A. E. Helv. Chim. Acta 1967, 50, 906.
(8) (a) Ferre-Filmon, K.; Delaude, L.; Demonceau, A.; Noels, A. F.
Coord. Chem. Rev. 2004, 248, 2323. (b) Beletskaya, I. P.; Cheprakov, A.
V. Chem. Rev. 2000, 100, 3009. (c) Guiso, M.; Marra, C.; Farina, A.
Tetrahedron Lett. 2002, 43, 597.
(9) Cho, C. S.; Uemura, S. J. Organomet. Chem. 1994, 465, 85.
(10) (a) Tramposch, K. M.; Nair, X.; Mariner, A.; Zusi, F. C. PCT Int.
Appl. WO9846228, 1988. (b) Jørgensen, M.; Krebs, F. C. J. Org. Chem.
2005, 70, 6004.
(11) Anderson, E. A.; Lim, D. S. W. Org. Lett. 2011, 13, 4806.
(12) (a) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716.
(b) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc.
2008, 130, 466. (c) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2008,
130, 14084. (d) Uno, B. E.; Gillis, E. P.; Burke, M. D. Tetrahedron
2009, 65, 3130. (e) Knapp, D. M.; Gillis, E. P.; Burke, M. D. J. Am.
Chem. Soc. 2009, 131, 6961. (f) Dick, G. R.; Knapp, D. M.; Gillis, E. P.;
Burke, M. D. Org. Lett. 2010, 12, 2314. (g) Struble, J. R.; Lee, S. J.;
Burke, M. D. Tetrahedron 2010, 66, 4710. (h) Woerly, E. M.; Cherney,
A. H.; Davies, E. K.; Burke, M. D. J. Am. Chem. Soc. 2010, 132, 6941.
(i) Lee, S. J.; Anderson, T. M.; Burke, M. D. Angew. Chem., Int. Ed.
a
5 mol % Pd(OAc)2, 10 mol % SPhos, 1.2 equiv of R1I, 7.5 equiv of
K3PO4; 1,4-dioxane, 60 °C, 12 h; filtered through pad of Celite,
b
concentrated, and used directly for the second coupling reaction. 2.5
mol % Pd2dba3, 1.2 equiv of R2I, 2 equiv TBAF, THF, 25 °C, 12 h.
c
Isolated yields over both coupling steps.
provided a range of products 7 with both electron-rich and
-deficient groups participating well, providing high overall yields
as a single regioisomer. The geometric integrity from the
hydrosilylation reaction was maintained in all cases with a
>98:2 E:Z ratio observed. This protocol has provided ready
access to novel trisubstituted styrenes which could have
applications in medicinal chemistry and organic electronics.
In conclusion, we have developed a rapid and robust
coupling sequence for the synthesis of stilbenes taking
advantage of the differential reactivity of vinyl silanes and
MIDA boronic esters. The reaction is very tolerant of
12
dx.doi.org/10.1021/ol503065a | Org. Lett. 2015, 17, 10−13