cycloisomerization,10 carbenoid coupling,11 radical tandem
cyclization,12 domino FriedelꢀCrafts type cyclization,13
Pd-mediated techniques,14 intramolecular McMurry reac-
tion,15 and olefin metathesis.16 Some of them have high
diastereo-17 or regioselectivity.18 Recently, Rajca et al.
reported the synthesis of a novel oligothiophene, in which
the thiophene rings are cross-conjugated and annelated
into a helix.19 However, among the numerous literatures,
only a few of them describe the synthesis of heterohelicenes,20
such as azahelicenes and oxa-helicenes, which suffer from
some disadvantages such as drastic reaction conditions,
unsatisfactory yields, long-reaction time, complex manipula-
tion, and inaccessible starting materials. Thus, the develop-
ment of new divergent and efficient synthetic strategies to
heterohelicenes remains highly demanding and challenging.
Herein, we report our preliminary results on the facile
and efficient synthesis of new and interesting heterohe-
licene-like molecules in very good yields with excellent
diastereoselectivities.
(8) (a) Yano, K.; Osatani, M.; Tani, K.; Adachi, T.; Yamamoto, K.;
Matsubara, H. Bull. Chem. Soc. Jpn. 2000, 73, 185. (b) Stammel, C.;
Froehlich, R.; Wolff, C.; Wenck, H.; de Meijere, A.; Mattay, J. Eur. J.
Starting material diimines, such as 6,60-((1,10)-(ethane-
1,2-diylbis(azanylylidene))bis(methanylylidene)) bis(phenol)
3a, are readily obtained from the reaction of salicylaldehyde
1a with ethane-1,2-diamine2a. The intramolecular cascade
reductive coupling reaction of 3atogether with triphosgene
was examined in the presence of 4 equiv of TiCl4/Sm as
the promoter in THF under reflux for 2 h, which gave the
desired dioxo-diaza[5]helicene-like 4a in 88% yield after
purification of the crude product through a single recrys-
tallization. Having established the optimal reaction con-
ditions, the substrate scope and limitations of the domino
reductive coupling reaction were subsequently investi-
gated. The representative results are summarized in
Scheme 1. The diimines were easily reduced by a low-valent
titanium reagent, so the main factor driving the reaction was
the nucleophilicity of the hydroxy group of diimines. We
found that the electronic properties of the substituents
attached to the phenyl rings had more influence than
the steric properties of the substituents on the reactivity.21
Some dioxo-diaza[5]helicene-like compounds containing a
hydroxy group, 4lꢀn, were obtained in 85ꢀ86% yields by
demethylation from their corresponding compounds con-
taining a methoxy group in the presence of BBr3.
€
Org. Chem. 1999, 1709. (c) Terfort, A.; Gorls, H.; Brunner, H. Synthesis
1997, 79. (d) Liu, L.; Katz, T. J. Tetrahedron Lett. 1991, 32, 6831.
(e) Laarhoven, W. H.; Prinsen, W. J. C. Top. Curr. Chem. 1984, 125, 63.
(f) Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Org. Lett. 2012,
14, 2988.
(9) (a) Carreno, M. C.; Gonzalez-Lopez, M.; Urbano, A. Chem.
Commun. 2005, 611. (b) Carreno, M. C.; Garcia-Cerrada, S.; Urbano, A.
Chem.;Eur. J. 2003, 9, 4118. (c) del Mar Real, M.; Sestelo, J. P.;
Sarandeses, L. A. Tetrahedron Lett. 2002, 43, 9111. (d) Carreno, M. C.;
Garcia-Cerrada, S.; Urbano, A. J. Am. Chem. Soc. 2001, 123, 7929. (e)
Paruch, K.; Katz, T. J.; Incarvito, C.; Lam, K.-C.; Rhatigan, B.;
Rheingold, A. L. J. Org. Chem. 2000, 65, 7602. (f) Katz, T. J. Angew.
Chem. 2000, 112, 1997. Angew. Chem., Int. Ed. 2000, 39, 1921. (g)
Latorre, A.; Urbano, A.; Carreno, M. C. Chem. Commun. 2011, 8103. (h)
Latorre, A.; Urbano, A.; Carreno, M. C. Chem. Commun. 2009, 6652. (i)
Carreno, M. C.; Enrıquez, A.; Garcıa-Lerrada, S.; Sanz-Cuesta, M. J.;
Urbano, A.; Maseras, F.; Nonell-Canala, A. Chem.;Eur. J. 2008, 14,
603–620.
~
~
~
(10) (a) Misek, J.; Teply, F.; Stara, I. G.; Tichy, M.; Saman, D.;
Cisarova, I.; Vojtisek, P.; Stary, I. Angew. Chem., Int. Ed. 2008, 47, 3188.
(b) Adriaenssens, L.; Severa, L.; Salova, T.; Cisarova, I.; Pohl, R.;
Saman, D.; Rocha, S. V.; Finney, N. S.; Pospisil, L.; Slavicek, P.; Teply,
ꢁ
ꢁ
F. Chem.;Eur. J. 2009, 15, 1072. (c) Stara, I. G.; Alexandrova, Z.;
ꢀꢀ
ꢁ
ꢁ
^
ꢁ
ꢀ
Teply, F.; Sehnal, P.; Stary, I.; Saman, D.; Budesınsky, M.; Cvacka
ꢁ
ꢁ
ꢁ
ꢀ
J. Org. Lett. 2005, 7, 2547. (d) Stara, I. G.; Stary, I.; Kollarovic, A.;
ꢁ
^
Teply, F.; Saman, D.; Fiedler, P. Collect. Czech. Chem. Commun. 2003,
ꢀ
68, 917. (e) Teply, F.; Stara, I. G.; Stary, I.; Kollarovic, A.; Saman, D.;
ꢁ
ꢁ
ꢁ
ꢁ
ꢀ
ꢀ
ꢀ
ꢁ
ꢁ
Vyskocil, S.; Fiedler, P. J. Org. Chem. 2003, 68, 5193. (f) Teply, F.; Stara,
ꢀ
I. G.; Stary, I.; Kollarovic, A.; Saman, D.; Rulisek, L.; Fiedler, P. J. Am.
ꢁ
ꢁ
ꢀ
ꢀ
ꢁ
ꢁ
ꢁ
ꢀ
Chem. Soc. 2002, 124, 9175. (g) Stara, I. G.; Stary, I.; Kollarovic, A.;
ꢀ
ꢀ
ꢁ
ꢀ
Teply, F.; Vyskocil, S.; Saman, D. Tetrahedron Lett. 1999, 40, 1993.
(h) Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. Angew. Chem., Int.
Ed. 2009, 48, 5470. (i) Heller, B.; Hapke, M.; Fischer, C.; Andronova, A.;
Single crystals of compound 4c were obtained and
analyzed by X-ray structural analysis, as shown in Figure 1.
The crystal belongs to the triclinic space group P1(2). In
the structure, the central piperazine ring shows a typical
chair conformation, combining with the two ortho-fused
lactonic rings and benzene rings to form the helicene-like
conformation. The H2 and H10 are in a trans stereoche-
mical configuration, while the interplanar angle between
the terminal benzene rings is 34.5°.
ꢁ
ꢁ
Stary, I.; Stara, I. G. J. Organomet. Chem. 2013, 723, 98.
(11) Gingras, M.; Dubois, F. Tetrahedron Lett. 1999, 40, 1309.
(12) (a) Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew. Chem., Int.
Ed. 2006, 45, 2242. (b) Harrowven, D. C.; Nunn, M. I. T.; Fenwick,
D. R. Tetrahedron Lett. 2002, 43, 7345. (c) Harrowven, D. C.; Nunn,
M. I. T.; Fenwick, D. R. Tetrahedron Lett. 2002, 43, 3189.
(13) (a) Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew.
Chem., Int. Ed. 2008, 47, 4870. (b) Fuchibe, K.; Jyono, H.; Fujiwara, M.;
Kudo, T.; Yokot, M.; Ichikawa, J. Chem.;Eur. J. 2011, 17, 12175.
(14) (a) Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew Chem.,
Int. Ed. 2008, 47, 9708. (b) Kamikawa, K.; Takemoto, I.; Takemoto, S.;
Matsuzaka, H. J. Org. Chem. 2007, 72, 7406. (c) Caeiro, J.; Pena, D.;
Cobas, A.; Perez, D.; Guitian, E. Adv. Synth. Catal. 2006, 348, 2466. (d)
Pena, D.; Dohas, A.; Perez, D.; Guitian, E.; Castedo, L. Org. Lett. 2003,
5, 1863. (e) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. Org. Lett. 1999,
1, 1555.
~
In the present work, the use of TiCl4/Sm as a potent
reductive coupling combination has been successfully
ꢁ
ꢁ
~
ꢁ
ꢁ
~
ꢁ
ꢁ
(20) (a) Dumitrascu, F.; Dumitrescu, D. G.; Aron, I. ARKIVOC
2010, 1, 1. (b) Hatakeyama, T.; Hashimoto, S.; Oba, T.; Nakamura, M.
(15) Wang, Z.-H.; Shi, J.-W.; Wang, J.-G.; Li, C.-L.; Tian, X.-Y.;
Cheng, Y.-X.; Wang, H. Org. Lett. 2010, 12, 456.
(16) (a) Grandbois, A.; Collins, S. K. Chem.;Eur. J. 2008, 14, 9323.
^ ꢁ
(b) Collins, S. K.; Grandbois, A.; Vachon, M. P.; Cote, J. Angew. Chem.,
Int. Ed. 2006, 45, 2923. (c) Cote, J.; Collins, S. K. Synthesis 2009, 1499.
ꢀ
ꢁ
ꢁ
ꢀ ꢀ
J. Am. Chem. Soc. 2012, 134, 19600. (c) Zadny, J.; Jancarık, A.;
ꢀ
ꢁ
ꢀ ꢁ
Andronova, A.; Samal, M.; Chocholousova, J. V.; Vacek, J.; Pohl, R.;
ꢀ
ꢀ
ꢁ
ꢁ
ꢁ
Saman, D.; Cısarova, I.; Stara, I. G.; Stary, I. Angew. Chem., Int. Ed.
2012, 51, 5857. (d) Yavari, K.; Moussa, S.; Hassine, B. B.; Retailleau, P.;
Voituriez, A.; Marinetti, A. Angew. Chem., Int. Ed. 2012, 51, 6748. (e)
Goto, K.; Yamaguchi, R.; Hiroto, S.; Ueno, H.; Kawai, T.; Shinokubo,
^ ꢁ
(17) Talele, H. R.; Sahoo, S.; Bedekar, A. V. Org. Lett. 2012, 14,
3166.
ꢁ
(18) Kelgtermans, H.; Dobrzanska, L.; Meervelt, V. V.; Dehaen, W.
Org. Lett. 2012, 14, 5200.
ꢀꢁ
H. Angew. Chem., Int. Ed. 2012, 51, 10333. (f) Severa, L.; Oncak, M.;
ꢀ
ꢀ ꢁ ꢁ
Koval, D.; Pohl, R.; Saman, D.; Cısarova, I.; Reyes-Gutierrez, P. E.;
ꢁ
ꢁ
ꢀ ꢀ
ꢁ
ꢀ
Sazelova, P.; Kasicka, V.; Teply, F.; Slavıcek, P. Angew. Chem., Int. Ed.
(19) (a) Rajca, A.; Wang, H.; Pink, M.; Rajca, S. Angew. Chem., Int.
Ed. 2000, 39, 4481. (b) Rajca, A.; Miyasaka, M.; Pink, M.; Wang, H.;
Rajca, S. J. Am. Chem. Soc. 2004, 126, 15211. (c) Miyasaka, M.; Rajca,
A.; Pink, M.; Rajca, S. J. Am. Chem. Soc. 2005, 127, 13806. (d)
Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. Chem.;Eur. J. 2004,
10, 6531. (e) Zak, J. K.; Miyasaka, M.; Rajca, S.; Lapkowski, M.; Rajca,
A. J. Am. Chem. Soc. 2010, 132, 3246. (f) Miyasaka, M.; Pink, M.;
Olankitwanit, A.; Rajca, S.; Rajca, A. Org. Lett. 2012, 14, 3076.
2012, 51, 11972. (g) Waghray, D.; Zhang, J.; Jacobs, J.; Nulens, W.;
ꢁ
Basaric, N.; Meervelt, L. V.; Dehaen, W. J. Org. Chem. 2012, 77, 10176. (h)
Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama, K.;
Endo, K. Chem. Commun. 2012, 48, 1311.
ꢁ
(21) (a) Poriel, C.; Barrie, F.; Thirion, D.; Rault-Berthelot, R.
Chem.;Eur. J. 2009, 15, 13304. (b) Yao, L.-F.; Tan, D.; Miao, X.;
Huang, K.-W. RSC Adv. 2012, 2, 7594.
Org. Lett., Vol. 15, No. 6, 2013
1239