Organic Letters
Letter
synthesis of natural products and applications in inorganic
materials chemistry.
Scheme 3. Scope of One-Pot Cycloaddition/Ru-Catalyzed
Redox-Neutral N−O Cleavage
ASSOCIATED CONTENT
* Supporting Information
■
S
Detailed experimental procedures and characterization data for
the new compounds are provided in the Supporting
Information. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank CSIR (India) for funding this project under 12FYP
CSIR-NCL-IGIB Joint research program (BSC0124) and a
research fellowship to C.V.S.
REFERENCES
■
(1) (a) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259−281.
(b) Trost, B. M. Acc. Chem. Res. 2002, 35, 695−705. (c) Newhouse,
T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010−
3021.
(2) Selected reviews for atom transfer processes: (a) Xiao, J.; Li, X.
W. Angew. Chem., Int. Ed. 2011, 50, 7226−7236. (b) Yeom, H. S.;
Shin, S. Acc. Chem. Res. 2014, 47, 966−977. (c) Zhang, L. M. Acc.
Chem. Res. 2014, 47, 877−888. For oxygen atom transfer from NO2:
(d) Asao, N.; Sato, K.; Yamamoto, Y. Tetrahedron Lett. 2003, 44,
5675−5677. (e) Ramana, C. V.; Patel, P.; Vanka, K.; Miao, B. C.;
Degterev, A. Eur. J. Org. Chem. 2010, 5955−5966.
was examined. The reaction worked magnificently with the
alkenes 1-dodecene 2a and ethylvinyl ether 2b, providing the
corresponding alkylation products 4ea and 4eb in fairly good
yields. A similar trend was noticed in the case of the isatogen 1f,
where the −NO2 group was replaced with the electron-
donating −OMe group. Again, 4fa and 4fb were isolated in
excellent yields. Gratifyingly, even the reactions of the isatogen
1g (where the −CF3 group is present at the same para-
position) with 1-dodecene and with the ethylvinyl ether
delivered 4ga and 4gb in good yields. Furthermore, the effect
of steric hindrance was examined by performing the reaction of
2-(o-MeOPh) isatogen 1h with 1-dodecene under the standard
conditions. This procured the C2-alkylated pseudoindoxyl 4ha
in 60% yield. Also, the reaction with the isatogen 1i proceeded
smoothly with 1-dodecene and ethyl vinyl ether, thus revealing
the compatibility of the N-Boc group under the present
reaction conditions. Compound 1i delivered the corresponding
β-aminoketo and ester compounds 4ia, 4ib in 66% and 62%
yields, respectively.
Mechanistically it is believed that, under the conditions
employed, reduction of the initial Ru(II) to Ru(0) does not
occur. Hence, we assume that the reaction starts with oxidative
insertion of the ruthenium into the N−O bond followed by
formation of a Ru(IV)−H after the β-hydride elimination. A
final reductive elimination of Ru(II) positions the H on the
nitrogen.19
In conclusion, the catalytic redox neutral N−O bond
cleavage of isoxazolidines has been installed as a novel tool in
the armory of organic synthesis. Its compatibility with the
preceding cycloaddition has been developed as a simple
protocol for the synthesis of 2,2-disubstituted pseudoindoxyl
scaffolds having proven potential as intermediates in the total
(3) Selected papers for the redox-neutral C−H activation using Pd:
(a) Kitamura, M.; Zaman, S.; Narasaka, K. Synlett 2001, 974−976.
(b) Wu, J. L.; Cui, X. L.; Chen, L. M.; Jiang, G. J.; Wu, Y. J. J. Am.
Chem. Soc. 2009, 131, 13888−13889. (c) Tan, Y.; Hartwig, J. F. J. Am.
Chem. Soc. 2010, 132, 3676−3677. (d) Jithunsa, M.; Ueda, M.; Aoi,
N.; Sugita, S.; Miyoshi, T.; Miyata, O. Synlett 2013, 24, 475−478.
(4) Rh: (a) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org.
Lett. 2008, 10, 325−328. (b) Guimond, N.; Gouliaras, C.; Fagnou, K.
J. Am. Chem. Soc. 2010, 132, 6908−6909. (c) Too, P. C.; Wang, Y.-F.;
Chiba, S. Org. Lett. 2010, 12, 5688−5691. (d) Rakshit, S.; Grohmann,
C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350−2353.
(e) Wang, F.; Song, G. Y.; Du, Z. Y.; Li, X. W. J. Org. Chem. 2011, 76,
2926−2932. (f) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem.
Soc. 2011, 133, 6449−6457. (g) Willwacher, J.; Rakshit, S.; Glorius, F.
Org. Biomol. Chem. 2011, 9, 4736−4740. (h) Zhang, X. Y.; Qi, Z. S.; Li,
X. W. Angew. Chem., Int. Ed. 2014, 53, 10794−10798. (i) Dateer, R. B.;
(5) Ru: (a) Li, B.; Feng, H.; Xu, S.; Wang, B. Chem.Eur. J. 2011,
17, 12573−12577. (b) Ackermann, L.; Fenner, S. Org. Lett. 2011, 13,
6548−6551. (c) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew.
Chem., Int. Ed. 2011, 50, 6379−6382. (d) Kornhaass, C.; Li, J.;
Ackermann, L. J. Org. Chem. 2012, 77, 9190−9198. (e) Yang, F.;
Ackermann, L. J. Org. Chem. 2014, 79, 12070−12082.
(6) Ir: Patel, P.; Chang, S. Org. Lett. 2014, 16, 3328−3331.
(7) Fe: Deb, I.; Yoshikai, N. Org. Lett. 2013, 15, 4254−4257.
(8) Cu: Zhao, M.-N.; Liang, H.; Ren, Z.-H.; Guan, Z.-H. Synthesis
2012, 44, 1501−1506.
(9) Selected reviews on intermolecular nitrone-cycloadditions:
(a) Martin, J. N.; Jones, R. C. F. In Synthetic Applications of 1,3-
Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products; Padwa, A., Pearson, W. H., Eds.; Wiley: Hoboken, NJ, 2003;
pp 1−81. (b) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565−598.
C
Org. Lett. XXXX, XXX, XXX−XXX