6700
M. Deodhar et al. / Tetrahedron Letters 53 (2012) 6697–6700
8. Meyer, N. D.; Haemers, A.; Mishra, L.; Pandey, H.-K.; Pieters, L. A. C.; Berghe, D.
A. V.; Vlietinck, A. J. Med. Chem. 1991, 34, 736–746.
9. Wall, M. E.; Wani, M. C.; Manikumar, G.; Abraham, P.; Taylor, H.; Hughes, T. J.;
Warner, J.; McGivney, R. J. Nat. Prod. 1988, 51, 1084–1091.
10. Yamashita, Y.; Kawada, S.; Nakano, H. Biochem. Pharmacol. 1990, 39, 737–744.
11. Ferriola, P.; Cody, V.; Middleton, E., Jr. Biochem. Pharmacol. 1989, 38, 1617–
1624.
12. Hayashi, T.; Uchida, K.; Hayashi, K.; Niwayama, S.; Morita, N. Br. J. Cancer 1988,
54, 595–600.
13. Double, J. A.; Bibby, M. C.; Loadman, P. M. Br. J. Cancer 1986, 3, 581–584.
14. Beutler, J. A.; Cardellina, J. H.; Lin, C. M., II; Hamel, E.; Cragg, G. M.; Boyd, M. R.
Bioorg. Med. Chem. Lett. 1993, 3, 581–584.
15. Heaton, A.; Kelly, G. E.; Kumar, N.; (Novogen Research Pty. Ltd., Australia).
Application: WO WO, 2002070502; Chem. Abstr. 2002, 137, 232488.
16. Maloney, D. J.; Deng, J. Z.; Starck, S. R.; Gao, Z.; Hecht, S. M. J. Am. Chem. Soc.
2005, 127, 4140–4141.
17. Carney, R. W. J.; Bencze, W. L.; Wojtkunski, J.; Renzi, A. A.; Dorfman, L.;
DeStevens, G. J. Med. Chem. 1966, 9, 516–520.
18. Brown, B. R.; Guffogg, S.; Kahn, M. L.; Smart, J. W.; Stuart, I. A. J. Chem. Soc.,
Perkin Trans. 1 1983, 1825–1829.
using flash column chromatography. Small quantities of the pure
isomers were eventually obtained after repeated column chroma-
tography purification and were subsequently hydrolyzed using
1 M KOH to give corresponding 40,7-dihydroxyflavans 18a–d.
The lack of stereoselectivity observed in the flavan system can
be rationalized by the fact that the C2 phenyl group is further away
from the intermediate cationic carbon than in the previously de-
scribed isoflavan system. As a result, the incoming nucleophile is
free to attack from either face of the carbocation, which leads to
a mixture of cis and trans isomers being produced.
Flavanol 16 was similarly condensed with an activated benzofu-
ran, indole, and isoflavene in the presence of BF3ꢀOEt2 to give 4-
heteroaryl analogues 17c–e as 1:1 mixtures of cis and trans isomers
(Table 2, entries 3–5). However, in these cases only the trans iso-
mer could be isolated in pure form after column chromatography.
With the slightly lower Rf value, the cis isomer could not ade-
quately be separated from the trans isomeric product to allow for
complete characterization. Hydrolysis of the trans isomers using
1 M KOH afforded the corresponding trans 40,7-dihydroxyflavans
18e–g in good yields.
19. Steynberg, P. J.; Nel, R. J.; Van Rensburg, H.; Bezuidenhoudt, B. C. B.; Ferreira, D.
Tetrahedron 1998, 54, 8153–8158.
20. Wahala, K.; Hase, T. A. J. Chem. Soc., Perkin Trans. 1 1991, 3005–3008.
21. Representative procedure for compound 9a: To a stirred solution of isoflavanol 8
(500 mg, 1.46 mmol) and 2-hydroxy-6-methoxyacetophenone (242 mg,
1.61 mmol) in CH2Cl2 (25 ml) was added BF3ꢀOEt2 (10 drops). The mixture
was stirred at r.t. for 2 h then quenched with H2O (25 ml). The aqueous layer
was extracted with CH2Cl2 (25 ml). The combined organic extracts were dried
over anhydrous Na2SO4 and concentrated under vacuum. Chromatography
(SiO2, 25% EtOAc/hexane) gave the title compound 9a as a white solid (480 mg,
67%). mp 138–140 °C; Found: C, 68.36; H, 5.64. Anal. Calculated for C28H26O8:
C, 68.56; H, 5.34. 1H NMR (300 MHz, CDCl3): d 2.26 (s, 3H, CH3COO), 2.60 (s, 3H,
CH3COO), 2.68 (s, 3H, CH3CO), 3.42 (m, 1H, H3), 3.83 (s, 3H, CH3O), 4.23 (m, 2H,
H2), 4.69 (d, J = 7.2 Hz, 1H, H4), 6.27 (d, J = 8.6 Hz, 1H, H500, 6.54 (dd, J = 8.3,
2.3 Hz, 1H, H6), 6.66 (d, J = 2.3 Hz, 1H, H8), 6.75 (d, J = 8.3 Hz, 1H, H5), 6.96 (d,
J = 8.7 Hz, 2H, H30, H50), 6.97 (d, J = 8.6 Hz, 1H, H600), 7.30 (d, J = 8.7 Hz, 2H, H20,
H60), 13.77 (s, 1H, OH); 13C NMR (75.6 MHz, CDCl3): d 20.9, 21.0, 33.6, 39.9,
43.0, 55.4, 68.6, 100.7, 109.6, 110.7, 114.0, 121.6, 122.0, 128.7, 130.7, 136.4,
138.3, 149.4, 149.9, 155.2, 160.3, 162.1, 169.2, 169.3, 205.3; UV (MeOH): kmax
In conclusion, BF3ꢀOEt2-catalyzed reactions of 40,7-diacetoxyi-
soflavan-4-ol 8 with activated aryl and heteroaryl compounds gave
trans 4-arylisoflavans and 4-heteroarylisoflavans in good yields in
a single step. The related reaction of 40,7-diacetoxyflavan-4-ol 16
under similar conditions gave the corresponding 4-arylflavans
and 4-heteroarylflavans as mixtures of cis/trans isomers.
References and notes
1. Bohm, B. A. Introduction to Flavonoids; Harwood Academic Publishers:
Amsterdam, 1998.
2. The Flavanoids: Advances in Research; Harborne, J. B., Mabry, T. J., Eds.; CRC Press
Inc, 1982.
3. The Flavanoids; Harborne, J. B., Mabry, T. J., Mabry, H., Eds.; CRC Press Inc, 1975.
4. Jordan, V. C. Cancer 1992, 70, 977–982.
5. Simpson, T. H.; Uri, N. Chem. Ind. 1956, 956–957.
6. Ito, M.; Ishimoto, S.; Nishida, Y.; Shiramizu, T.; Yunoki, H. Agric. Biol. Chem.
1986, 50, 1073–1074.
206 nm (e
49509 cm-1Mꢁ1), 275 (14429), 344 (4233); IR (KBr): mmax 3452,
2930, 1760, 1613, 1496, 1463, 1428, 1368, 1317, 1244, 1207, 1146, 1111, 1088,
1035, 1017, 911, 801 cmꢁ1; MS (TOF-ESI) m/z Calcd for C28H26O8Na (M + Na)+
513.15. Found 513.12.
22. Crystallographic data for the structure in this Letter have been deposited with
the Cambridge Crystallographic Data Centre as supplementary publication no.
CCDC 882494 (10g). The X-ray crystal structure was obtained by Donald Craig,
Crystallography Laboratory, UNSW Analytical Centre, Sydney, Australia.
23. Al-Ani, H. A. M.; Dewick, P. M. J. Chem. Soc., Perkin Trans. 1 1984, 2831–2838.
7. Ares, J. J.; Outt, P. E.; Randall, J. L.; Murray, P. D.; Weisshaar, P. S.; O’Brien, L. M.;
Ems, B. L.; Kakodkar, S. V.; Kelm, G. R.; Kershaw, W. C.; Werchowski, K. M.;
Parkinson, A. J. Med. Chem. 1995, 38, 4937–4943.