Page 5 of 6
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
1 Kohei, T.; Miyaura, N. Introduction to Cross-Coupling Reactions. In
22 McCarthy, S. M.; Lin, Y.-C.; Devarajan, D.; Chang, J. W.; Yennawar,
H. P.; Rioux, R. M.; Ess, D. H.; Radosevich, A. T. Intermolecular N–H Oxi-
dative Addition of Ammonia, Alkylamines, and Arylamines to a Planar
σ3-Phosphorus Compound via an Entropy-Controlled Electrophilic
Mechanism. J. Am. Chem. Soc. 2014, 136 (12), 4640–4650.
23 Zhao, W.; McCarthy, S. M.; Lai, T. Y.; Yennawar, H. P.; Radosevich,
A. T. Reversible Intermolecular E–H Oxidative Addition to a Geometri-
cally Deformed and Structurally Dynamic Phosphorous Triamide. J. Am.
Chem. Soc. 2014, 136 (50), 17634–17644.
Cross-Coupling Reactions: A Practical Guide; Miyaura, N., Ed.; Topics in
Current Chemistry; Springer: Berlin, Heidelberg, 2002; pp 1–9.
2 Chu, T.; Nikonov, G. I. Oxidative Addition and Reductive Elimination
at Main-Group Element Centers. Chem. Rev. 2018, 118 (7), 3608–3680.
3 Weetman, C.; Inoue, S. The Road Travelled: After Main‐Group Ele‐
ments as Transition Metals. ChemCatChem 2018, 10 (19), 4213–4228.
4 Jana, A.; Samuel, P. P.; Tavčar, G.; Roesky, H. W.; Schulzke, C. Selec‐
tive Aromatic C−F and C−H Bond Activation with Silylenes of Different
Coordinate Silicon. J. Am. Chem. Soc. 2010, 132 (29), 10164–10170.
24 Robinson, T. P.; De Rosa, D. M.; Aldridge, S.; Goicoechea, J. M. E–H
Bond Activation of Ammonia and Water by a Geometrically Con-
strained Phosphorus(III) Compound. Angew. Chem. Int. Ed. 2015, 54
(46), 13758–13763.
5
9
Samuel, P. P.; Singh, A. P.; Sarish, S. P.; Matussek, J.; Objartel, I.;
Roesky, H. W.; Stalke, D. Oxidative Addition Versus Substitution Reac-
tions of Group 14 Dialkylamino Metalylenes with Pentafluoropyridine.
Inorg. Chem. 2013, 52 (3), 1544–1549.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
25 Uchida, Y.; Onoue, K.; Tada, N.; Nagao, F.; Oae, S. Ligand Coupling
Reaction on the Phosphorus Atom. Tetrahedron Lett. 1989, 30 (5), 567–
570.
6
R. Crimmin, M.; J. Butler, M.; P. White, A. J. Oxidative Addition of
Carbon–Fluorine and Carbon–Oxygen Bonds to Al(I). Chem. Commun.
2015, 51 (88), 15994–15996.
26 For mechanistically distinct hydrodefluorination catalyzed by p-
block Lewis acids, see: (a) Caputo, C. B.; Hounjet, L. J.; Dobrovetsky, R.;
Stephan, D. W. Lewis Acidity of Organofluorophosphonium Salts: Hy-
drodefluorination by a Saturated Acceptor. Science 2013, 341 (6152),
1374–1377. (b) Stahl, T.; Klare, H. F. T.; Oestreich, M. Main-Group Lewis
Acids for C–F Bond Activation. ACS Catal. 2013, 3 (7), 1578–1587.
27 Chen, W.; Bakewell, C.; Crimmin, M. Functionalisation of Carbon–
Fluorine Bonds with Main Group Reagents. Synthesis 2016, 49 (04),
810–821.
7 Chu, T.; Boyko, Y.; Korobkov, I.; Nikonov, G. I. Transition Metal-like
Oxidative Addition of C–F and C–O Bonds to an Aluminum(I) Center.
Organometallics 2015, 34 (22), 5363–5365.
8 Styra, S.; Melaimi, M.; Moore, C. E.; Rheingold, A. L.; Augenstein, T.;
Breher, F.; Bertrand, G. Crystalline Cyclic (Alkyl)(Amino)Carbene-Tet-
rafluoropyridyl Radical. Chem. – Eur. J. 2015, 21 (23), 8441–8446.
9 N. Swamy, V. S. V. S.; Parvin, N.; Raj, K. V.; Vanka, K.; Sen, S. S. C(sp
3)–F, C(sp2)–F and C(sp3)–H Bond Activation at Silicon(II) Centers.
Chem. Commun. 2017, 53 (71), 9850–9853.
28
Competition experiments among the perfluoroarene substrates
10 Ganesamoorthy, C.; Loerke, S.; Gemel, C.; Jerabek, P.; Winter, M.;
Frenking, G.; Fischer, R. A. Reductive Elimination: A Pathway to Low-
Valent Aluminium Species. Chem. Commun. 2013, 49 (28), 2858–2860.
(b) Urwin, S. J.; Rogers, D. M.; Nichol, G. S.; Cowley, M. J. Ligand Coordi-
nation Modulates Reductive Elimination from Aluminium(III). Dalton
Trans. 2016, 45 (35), 13695–13699.
investigated at 70 °C revealed the following qualitative ordering of re-
activity: perfluorobenzonitrile > pentafluoropyridine > octafluorotolu-
ene.
29 Selective C–F OA at the 4-position was also observed in reactions
with 2,4,6-trifluoropyridine (31P δ -56.3 ppm, 1JP–F = 798 Hz) and 3,4,5-
trifluoropyridine (31P δ -60.0 ppm, 1JP–F = 769 Hz) in tetrahydrofuran at
150 °C, although accompanied by unidentified side reactions.
30 (a) Arévalo, A.; Tlahuext-Aca, A.; Flores-Alamo, M.; García, J. J. On
the Catalytic Hydrodefluorination of Fluoroaromatics Using Nickel
Complexes: The True Role of the Phosphine. J. Am. Chem. Soc. 2014, 136
(12), 4634–4639. (b) Facundo, A. A.; Arévalo, A.; Fundora-Galano, G.;
Flores-Álamo, M.; Orgaz, E.; García, J. J. Hydrodefluorination of Func-
tionalized Fluoroaromatics with Triethylphosphine: A Theoretical and
Experimental Study. New J. Chem. 2019, 43 (18), 6897–6908.
31 For examples of OA of non-aryl C–F bonds to σ3-P compounds, see:
(a) Weiss, J.-V.; Schmutzler, R. Formation of a Carbon–Phosphorus
Bond between a C–F Compound and Phosphorus(III) Fluorides: A Flu-
orine Analogue of the Kinnear–Perren Reaction Furnishing 1-Adaman-
tylfluorophosphoranes. J. Chem. Soc. Chem. Commun. 1976, 0 (16), 643–
644. (b) Burton, D. J.; Shinya, S.; Howells, R. D. The Role of α and β Flu‐
orine in Product Determination of Fluoro Olefin-Tertiary Phosphine
Reactions. Ylide vs. Vinylphosphorane Formation. J. Am. Chem. Soc.
1979, 101 (13), 3689–3690. (c) Plack, V.; Goerlich, J. R.; Thönnessen,
H.; Jones, P. G.; Schmutzler, R. Air-Stable Trifluorophosphoranes: Prep-
aration, X-Ray Crystal Structure Determinations, and Reactions. Z. Für
Anorg. Allg. Chem. 1999, 625 (8), 1278–1286. (d) Keßler, M.; Neumann,
B.; Stammler, H.-G.; Hoge, B. Fluorotrimethyl[(Z)-Pentafluoropropen-
1-Yl]Phosphorane: Structure, Bonding, and Reactivity. Z. Für Anorg.
Allg. Chem. 2020, 646, 1–7.
11 Tolentino, D. R.; Neale, S. E.; Isaac, C. J.; Macgregor, S. A.; Whittle-
sey, M. K.; Jazzar, R.; Bertrand, G. Reductive Elimination at Carbon un-
der Steric Control. J. Am. Chem. Soc. 2019, 141 (25), 9823–9826.
12
Finet, J.-P. Ligand Coupling Reactions with Heteroatomic Com-
pounds; Pergamon, 1998.
13 Oae, S. Ligand Coupling Reactions Through Hypervalent and Sim-
ilar Valence-Shell Expanded Intermediates. Croat. Chem. Acta 1986, 59
(1), 129–151.
14 Sagae, T.; Ogawa, S.; Furukawa, N. Stereochemical Proof for Front
Side Deuteride Attack via σ-Sulfurane in the Reductive Desulfinylation
of Sulfoxides with Lithium Aluminum Deuteride. Tetrahedron Lett.
1993, 34 (25), 4043–4046.
15 Crivello, J. V. Redox Initiated Cationic Polymerization: Reduction
of Diaryliodonium Salts by 9-BBN. J. Polym. Sci. Part Polym. Chem. 2009,
47 (21), 5639–5651.
16 Dunn, N. L.; Ha, M.; Radosevich, A. T. Main Group Redox Catalysis:
Reversible PIII/PV Redox Cycling at a Phosphorus Platform. J. Am.
Chem. Soc. 2012, 134 (28), 11330–11333.
17 Reichl, K. D.; Dunn, N. L.; Fastuca, N. J.; Radosevich, A. T. Biphilic
Organophosphorus Catalysis: Regioselective Reductive Transposition
of Allylic Bromides via PIII/PV Redox Cycling. J. Am. Chem. Soc. 2015, 137
(16), 5292–5295.
18 Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich,
A. T. A Biphilic Phosphetane Catalyzes N–N Bond-Forming Cadogan
Heterocyclization via PIII/PV═O Redox Cycling. J. Am. Chem. Soc. 2017,
139 (20), 6839–6842.
32 Lee, K.; Blake, A. V.; Tanushi, A.; McCarthy, S. M.; Kim, D.; Loria, S.
M.; Donahue, C. M.; Spielvogel, K. D.; Keith, J. M.; Daly, S. R.; Radosevich,
A. T. Validating the Biphilic Hypothesis of Nontrigonal Phosphorus(III)
Compounds. Angew. Chem. Int. Ed. 2019, 58 (21), 6993–6998.
33 P(NMePh)3 was unreactive under the same reaction conditions.
For the reaction of P(NEt2)3 with 2a, see: Gutov, A. V.; Rusanov, E. B.;
Ryabitskii, A. B.; Chernega, A. N. Octafluoro-4,4′-Bipyridine and Its De-
rivatives: Synthesis, Molecular and Crystal Structure. J. Fluor. Chem.
2010, 131 (2), 278–281.
19 Nykaza, T. V.; Cooper, J. C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung,
M. R.; Radosevich, A. T. Intermolecular Reductive C–N Cross Coupling
of Nitroarenes and Boronic Acids by PIII/PV═O Catalysis. J. Am. Chem.
Soc. 2018, 140 (45), 15200–15205.
20 Hilton, M. C.; Zhang, X.; Boyle, B. T.; Alegre-Requena, J. V.; Paton, R.
S.; McNally, A. Heterobiaryl Synthesis by Contractive C–C Coupling via
P(V) Intermediates. Science 2018, 362 (6416), 799–804.
21 Planas, O.; Wang, F.; Leutzsch, M.; Cornella, J. Fluorination of Aryl-
boronic Esters Enabled by Bismuth Redox Catalysis. Science 2020, 367
(6475), 313–317.
34 τ = (∠N1–P1–F1/H1 - ∠N2–P1–F3)/60°. For the definition of τ, see:
Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J. van; Verschoor, G. C. Syn-
thesis, Structure, and Spectroscopic Properties of Copper(II) Com-
pounds Containing Nitrogen–Sulphur Donor Ligands; the Crystal and
5
ACS Paragon Plus Environment