Angewandte
Chemie
McCauley, B. S. Blumberg, R. A. Dwek, T. M. Block, Proc. Natl.
Acad. Sci. USA 1999, 96, 11878.
[10] R. A. Dwek, T. D. Butters, F. M. Platt, N. Zitzmann, Nat. Rev.
Drug Discovery 2002, 1, 65.
[11] T. D. Butter, R. A. Dwek, F. M. Platt, Chem. Rev. 2000, 100,
4683. For example, N-butyldeoxynojirimycin (NB-DNJ or
in 69% yield (de > 98%). Deprotection of 15 yielded (ꢀ)-
adenophorine (3) ([a]2D2 = ꢀ52.3 (c = 0.20 in water)) which
was identical in all respects to a sample of the natural product
save its opposite sense of rotation ([a]D = ++ 59.7 (c = 1.0 in
water)). On the basis of these results we have assigned the
absolute configuration of the natural product (+)-adenophor-
ine to the enantiomer of 3.
In summary, we have exploited configurational dynamics
at the nitrogen atom in azasugar chloramines to control the
regiochemistry of elimination. Moreover, after the factors
controlling stereoselectivity were determined, subsequent
nucleophilic additions to the resulting imines were achieved
with excellent diastereoselectivity. Together these represent,
to the best of our knowledge, the first examples of a
switchable, stereochemical relay from N to neighboring C1
or C5 positions. Furthermore, this imine methodology has
enabled us to synthesize a number of novel hydrophobically
modified azasugars. We were able to identify a good and
highly selective inhibitor of human a-glucosidase[33] and
completed the first synthesis of (ꢀ)-adenophorine, thereby
allowing assignment of the configuration of the natural (+)
isomer.
Zavesca) is
a powerful glucosylceramide synthase (GCS)
inhibitor and is now approved for use in Europe for the
treatment of Gaucher disease, a glycolipid-storage disease.
[12] J. Q. Fan, S. Ishii, N. Asano, Y. Suzuki, Nat. Med. 1999, 5, 112.
[13] a) M. L. Sinnott, Chem. Rev. 1990, 90, 1171; b) G. Legler, Adv.
Carbohydr. Chem. Biochem. 1990, 48, 319; c) A. E. Stütz,
Angew. Chem. 1996, 108, 2054; Angew. Chem. Int. Ed. Engl.
1996, 35, 1926; d) T. D. Heightman, A. T. Vasella, Angew. Chem.
1999, 111, 794; Angew. Chem. Int. Ed. 1999, 38, 750.
[14] a) G. W. J. Fleet, S. K. Namgoong, C. Barker, S. Baines, G. S.
Jacob, B. Winchester, Tetrahedron Lett. 1989, 30, 4439; b) F. M.
Platt, G. R. Neises, G. B. Karlsson, R. A. Dwek, T. D. Butters, J.
Biol. Chem. 1994, 269, 27108; c) Y. BlØriot, C. R. Veighey, K. H.
Smelt, J. Cadefau, W. Stalmans, K. Biggadike, A. L. Lane, M.
Müller, D. J. Watkin, G. W. J. Fleet, Tetrahedron: Asymmetry
1996, 7, 2761; d) T. D. Butters, L. A. G. M. van den Broek,
G. W. J. Fleet, T. M. Krulle, M. R. Wormald, R. A. Dwek, F. M.
Platt, Tetrahedron: Asymmetry 2000, 11, 113.
[15] K. Ikeda, M. Takahashi, M. Nishida, M. Miyauchi, H. Kizu, Y.
Kameda, M. Arisawa, A. A. Watson, R. J. Nash, G. W. J. Fleet,
N. Asano, Carbohydr. Res. 2000, 323, 73.
Received: January 23, 2003 [Z51002]
[16] Depending on the absolute configuration of adenophorine,
either C1 or C5 of structure
pseudoanomeric center.
[17] B. G. Davis, M. A. T. Maughan, T. M. Chapman, R. Villard, S.
Courtney, Org. Lett. 2002, 4, 103.
[18] B. A. Horenstein, R. F. Zabinski, V. L. Schramm, Tetrahedron
Lett. 1993, 34, 7213.
[19] a) G. B. Evans, R. H. Furneaux, T. L. Hutchison, H. S. Kezar,
P. E. Morris, V. L. Schramm, P. C. Tyler, J. Org. Chem. 2001, 66,
5723; b) G. B. Evans, R. H. Furneaux, G. J. Gainsford, V. L.
Schramm, P. C. Tyler, Tetrahedron 2000, 56, 3053; c) R. H.
Furneaux, V. L. Schramm, P. C. Tyler, Bioorg. Med. Chem. 1999,
7, 2599; d) R. H. Furneaux, G. Limberg, P. C. Tyler, V. L.
Schramm, Tetrahedron 1997, 53, 2915.
[20] T. M. Chapman, S. Courtney, P. Hay, B. G. Davis, Chem. Eur. J.
2003, in press.
[21] Additions of carbon nucleophiles to polyhydroxylated imines
are rare. See T. Granier, A. Vasella, Helv Chim. Acta 1998, 81,
865 for the addition of trimethylsilyl cyanide.
3 may be viewed as the
Keywords: asymmetric synthesis · azasugars · carbohydrates ·
glycosidase inhibitors · imines · stereodynamics
.
[1] A. Rauk, L. C. Allen, K. Mislow, Angew. Chem. 1970, 82, 453;
Angew. Chem. Int. Ed. Engl. 1970, 9, 400.
[2] a) F. A. L. Anet, I. Yavari, Tetrahedron Lett. 1977, 18, 3207; b) H.
Kessler, D. Leibfritz, Tetrahedron Lett. 1970, 11, 4297; c) J.-M.
Lehn, J. Wagner, J. Chem. Soc. D 1970, 414.
[3] S. D. Bull, S. G. Davies, D. J. Fox, A. C. Garner, T. G. R. Sellers,
Pure Appl. Chem. 1998, 70, 1501.
[4] a) B. Winchester, G. W. J. Fleet, Glycobiology 1992, 2, 199;
b) A. E. Stütz, Iminosugars as Glycosidase Inhibitors, Wiley-
VCH, Weinheim, 1999; c) N. Asano, R. J. Nash, R. J. Molyneux,
G. W. J. Fleet, Tetrahedron: Asymmetry 2000, 11, 1645.
[5] Anticancer strategies: P. E. Goss, M. A. Baker, J. P. Carver, J. W.
Dennis, Clin. Cancer Res. 1995, 1, 935.
[22] By the method of Vasella and co-workers: R. Hoos, A. B.
Naughton, A. Vasella, Helv. Chim. Acta 1993, 76, 1802 and by
additional methods that will be published elsewhere.
[23] By an adaptation of the method of Haines and co-workers: P. A.
Fowler, A. H. Haines, R. J. K. Taylor, E. J. T. Chrystal, M. B.
Gravestock, Carbohydr. Res. 1993, 246, 377 and by additional
methods that will be published elsewhere.
[24] The signals of 10 may broaden more readily because of smaller
differences, relative to those of 9, in the chemical shifts of the
two N-epimers in the slow-exchange limit, in addition to, or
possibly instead of, differences in inversion exchange rates.
Unfortunately, it was not possible to decoalesce the resonances
of 10 and thus establish these shift differences.
[25] This Saytzev-sense elimination to form a more substituted imine
is presumably favored by a high degree of double-bond character
in the typically late transition states in imine-forming elimina-
tions. For the formation of Saytzev products in base-catalyzed
eliminations in six-membered-ring systems see: N. O. Brace, J.
Am. Chem. Soc. 1964, 86, 2428 and M. Bartok, K. Felfoldi, G.
Bozoki-Bartok, Helv. Chim. Acta 1980, 63, 2173 – 2178. For a
primary example of the propensity of DBU to yield Saytzev
[6] Antidiabetes strategies: K. A. Watson, E. P. Mitchell, L. N.
Johnson, J. C. Son, C. J. F. Bichard, M. G. Orchard, G. W. J.
Fleet, N. G. Oikonomakos, D. D. Leonidas, M. Kontou, A. C.
Papageorgiou, Biochemistry 1994, 33, 5745.
[7] Antituberculosis strategies a) B. G. Davis, T. W. Brandstetter, L.
Hackett, B. G. Winchester, R. J. Nash, A. A. Watson, R. C.
Griffiths, C. Smith, G. W. J. Fleet, Tetrahedron 1999, 55, 4489;
b) J. P. Shilvock, J. R. Wheatley, R. J. Nash, A. A. Watson, R. C.
Griffiths, T. D. Butters, M. Muller, D. J. Watkin, D. A. Winkler,
G. W. J. Fleet, J. Chem. Soc. Perkin Trans. 1 1999, 2735.
[8] Antiparasite strategies: a) C. M. Li, P. C. Tyler, R. H. Furneaux,
G. Kicska, Y. M. Xu, C. Grubmeyer, M. E. Girvin, V. L.
Schramm, Nat. Struct. Biol. 1999, 6, 582; b) R. W. Miles, P. C.
Tyler, G. B. Evans, R. H. Furneaux, D. W. Parkin, V. L.
Schramm, Biochemistry 1999, 38, 13147.
[9] a) A. Karpas, G. W. J. Fleet, R. A. Dwek, S. Petursson, S. K.
Namgoong, N. G. Ramsden, G. S. Jacob, T. W. Rademacher,
Proc. Natl. Acad. Sci. USA 1988, 85, 9229; b) T. M. Block, X. L.
Xu, F. M. Platt, G. R. Foster, W. H. Gerlich, B. S. Blumberg,
R. A. Dwek, Proc. Natl. Acad. Sci. USA 1994, 91, 2235; c) N.
Zitzmann, A. S. Mehta, S. Carrouee, T. D. Butters, F. M. Platt, J.
Angew. Chem. Int. Ed. 2003, 42, 3788 –3792
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3791