Organic Letters
Letter
Colloredo-Melz, S.; Frankenfield, K. N.; Mitchell, C. H.; Freccero, M.;
Rokita, S. E. J. Am. Chem. Soc. 2006, 128, 11940−11947.
(8) El-Sepelgy, O.; Haseloff, S.; Alamsetti, S. K.; Schneider, C. Angew.
Chem., Int. Ed. 2014, 53, 7923−7927.
(9) (a) Rappoport, Z. The Chemistry of Phenols; Wiley-VCH:
Weinheim, 2003. (b) Tyman, J. H. P. Studies in Organic Chemistry 52.
Synthetic and Natural Phenols; Elsevier: Amsterdam, 1996.
(10) (a) Rokita, S. E.; Yang, J.; Pande, P.; Greenberg, W. A. J. Org.
Chem. 1997, 62, 3010−3012. (b) Pande, P.; Shearer, J.; Yang, J.;
Greenberg, W. A.; Rokita, S. E. J. Am. Chem. Soc. 1999, 121, 6773−
6779.
iently available by conventional carbonyl-based akylation
chemistry. Future efforts in our laboratories are directed
toward expanding the utility of these reactions and toward the
synthesis of natural products made possible by the o-QM-
enolate coupling reactions.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, characterization data, and 1H and 13
C
spectra for all new compounds. Computational data and
stereochemical analysis data for compounds 5f, 5j, 5l, and 5o.
Crystallographic data for compounds 5f and 5o. This material is
(11) (a) Mattson, A. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129,
4508−4509. (b) Izquierdo, J.; Orue, A.; Scheidt, K. A. J. Am. Chem.
Soc. 2013, 135, 10634−10637. (c) Lee, A.; Younai, A.; Price, C. K.;
Izquierdo, J.; Mishra, R. K.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136,
10589−10592.
(12) For a general review regarding aza-ortho-xylylenes, see:
Wojciechowski, K. Eur. J. Org. Chem. 2001, 3587−3605.
(13) For a discussion of fluoride-induced formation of enolates from
silyl enolethers and silylketene acetals, see: (a) Noyori, R.; Nishida, I.;
Sakata, J.; Nishizawa, M. J. Am. Chem. Soc. 1980, 102, 1223−1225.
(b) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1983, 105,
1598−1608.
(14) (a) Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J. Chem. Rev.
2012, 112, 1839−1862. See also: (b) Bifulco, G.; Dambruoso, P.;
Gomez-Paloma, L.; Riccio, R. Chem. Rev. 2007, 107, 3744−3779.
(15) For a recent example, see: MercadoMarin, E. V.; GarciaReynaga,
P.; Romminger, S.; Pimenta, E. F.; Romney, D. K.; Lodewyk, M. W.;
Williams, D. E.; Andersen, R. J.; Miller, S. J.; Tantillo, D. J.; Berlinck,
R. G.; Sarpong, R. Nature 2014, 509, 318−324.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the National Institutes of Health
(R01CA163287), the University of Hawaii, the University of
Hawaii Cancer Center, the Achievement Rewards for College
Scientists Foundation (R.S.L.), and the McNair Student
Achievement Program (A.T.D. and T.A.P.) is gratefully
acknowledged. We thank W. Yoshida (UH) for assistance
with NMR data collection, and we thank Dr. J. Greaves (UC
Irvine Mass Spectrometry Facility) for accurate mass measure-
ments.
(16) (a) Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413−
1423. (b) Oare, D.; Heathcock, C. Top. Stereochem. 1989, 19, 227−
407. For a recent computational investigation of Michael addition
reactions as influenced by chelation, see: (c) Kwan, E. E.; Evans, D. A.
Org. Lett. 2010, 12, 5124−5127.
(17) See Supporting Information for details.
(18) The enone geometrical configuration in 7a and 7b was
established by 1H NMR and NOE analysis. See Supporting
Information for details.
REFERENCES
■
(1) (a) Quinone Methides; Rokita, S. E., Ed.; John Wiley and Sons:
Hoboken, NJ, 2009. (b) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver,
M. G.; Wu, K.-L.; Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655−
3664. (c) Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58,
5367−5405. (d) Ferreira, S. B.; Silva, F. C.; Pinto, A. C.; Gonzaga, D.
T. G.; Ferreira, V. F. J. Heterocycl. Chem. 2009, 46, 1080−1097.
(e) Pathak, T. P.; Sigman, M. S. J. Org. Chem. 2011, 76, 9210−9215.
(2) Fries, K.; Kann, K. Liebigs Ann. Chem. 1907, 353, 335−356.
(3) For representative examples, see: (a) Li, V.-S.; Choi, D.; Tang,
M.-s.; Kohn, H. J. Am. Chem. Soc. 1996, 118, 3765−3766 and
references therein. (b) Moore, H. W. Science 1977, 197, 527−532.
(c) Lloyd, H. A.; Sokoloski, E. A.; Strauch, B. S.; Fales, H. M. J. Chem.
Soc., Chem. Commun. 1969, 299−301. (d) Chauhan, M.; Dean, F. M.;
Hindley, K.; Robinson, M. J. Chem. Soc., Chem. Commun. 1971, 1141−
1142. (e) Bowry, V. W.; Ingold, K. U. J. Org. Chem. 1995, 60, 5456−
5467. (f) Leary, G. J. Chem. Soc. (A) 1971, 2248−2250.
(g) Balakrishnan, G.; Umapathy, S. J. Mol. Struct. 1999, 475, 5−11.
(4) (a) Gardner, P. D.; Rafsanjani, H. S.; Rand, L. J. Am. Chem. Soc.
1959, 81, 3364−3367. (b) Merijan, A.; Gardner, P. D. J. Org. Chem.
1965, 30, 3965−3967. See also: (c) Angle, S. R.; Rainier, J. D.;
Woytowicz, C. J. Org. Chem. 1997, 62, 5884−5892.
(5) Shaikh, A. k.; Cobb, A. J. A.; Varvounis, G. Org. Lett. 2012, 14,
584−587.
(6) (a) Lau, C. K.; Williams, H. W. R.; Tardiff, S.; Dufresne, C.;
Scheigetz, J.; Belanger, P. C. Can. J. Chem. 1989, 67, 1384−1387.
(b) Chambers, J. D.; Crawford, J.; Williams, H. W. R.; Dufresne, C.;
Scheigetz, J.; Bernstein, M. A.; Lau, C. K. Can. J. Chem. 1992, 70,
1717−1732.
(7) (a) Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008,
10, 4951−4953. For a general discussion of electronic and structural
effects on o-QM stability, see: (b) Weinert, E. E.; Dondi, R.;
2281
Org. Lett. 2015, 17, 2278−2281