Synthesis and Properties of Dithienophospholes
FULL PAPER
and 7 were obtained as off-white solids (R=Ph: 1.50 g, 72% yield; R=
tBu: 1.43 g, 72% yield).
MS (70 eV, EI): m/z (%): 432 (100) [M+], 417 (55) [M+ÀMe], 73 (40)
[SiMe3+]; elemental analysis calcd (%) for C20H25OPS2Si2 (432.7): C
55.52, H 5.82, S 14.82; found: C 55.63, H 5.82, S 15.51.
1
Compound 6: 31P{1H} NMR (162 MHz, CDCl3): d=À25.0 ppm; H NMR
Compound 10b: 31P{1H} NMR (80.9 MHz, CDCl3): d=14.9 ppm; 1H
NMR (400 MHz, CDCl3): d=7.67 (dd, 3J(H,P)=13.5, 3J(H,H)=7.5 Hz,
2H; o-Ph), 7.45 (td, 3J(H,H)=7.5, 4J(C,P)=1.9 Hz, 1H; p-Ph), 7.36 (td,
(400 MHz, CDCl3): d=7.34 (br, 2H; o-Ph), 7.26 (br, 2H; m-Ph), 7.25 (br,
1H; p-Ph), 7.20 (s, 2H; Ar-H), 0.30 ppm (s, 18H; Si(CH3)3); 13C{1H}
NMR (100.6 MHz, CDCl3): d=148.6 (d, 2J(C,P)=9.6 Hz; Ar), 146.7 (br;
Ar), 142.6 (d, J(C,P)=2.1 Hz; Ar), 133.9 (d, 1J(C,P)=15.5 Hz; ipso-Ph),
133.0 (d, 2J(C,P)=18.3 Hz; o-Ar), 132.4 (d, 2J(C,P)=20.3 Hz; o-Ar),
3
2
3J(H,H)=7.8, J(H,P)=3.3 Hz, 2H; m-Ph), 7.12 (d, J(H,P)=2.2 Hz, 2H;
Ar-H), 0.83 (s, 18H; Si-tBu), 0.20 (s, 6H; SiMe2), 0.19 ppm (s, 6H;
SiMe2); 13C{1H} NMR (100.6 MHz, CDCl3): d=150.9 (d, J(C,P)=
23.7 Hz; Ar), 142.8 (d, J(C,P)=10.7 Hz; Ar), 139.5 (d, 1J(C,P)=
108.3 Hz; ipso-Ar), 133.2 (d, 2J(C,P)=13.7 Hz; o-Ar), 132.2 (d, 4J(C,P)=
3.8 Hz; p-Ph), 130.9 (d, J(C,P)=11.4 Hz; m-Ar), 130.1 (d, 1J(C,P)=
105.3 Hz; ipso-Ph), 128.7 (d, 2J(C,P)=13.7 Hz; o-Ar), 26.3 (s; SiC-
(CH3)3), 16.9 (s; SiC(CH3)3), À4.8 (s; SiMe), À4.9 ppm (s; SiMe); ele-
mental analysis calcd (%) for C26H37OPS2Si2 (516.9): C 60.42, H 7.11, S
12.41; found: C 60.73, H 7.13, S 12.85.
3
129.0 (s; p-Ph), 128.5 (d, J(C,P)=7.8 Hz; m-Ph), À0.2 ppm (s; SiC3); MS
(70 eV, EI): m/z (%): 416 (80) [M+], 73 (100) [SiMe3+]; elemental analy-
sis calcd (%) for C20H25PS2Si2 (416.7): C 57.65, H 6.05, S 15.39; found: C
57.68, H 5.93, S 15.40.
Compound 7: 31P{1H} NMR (162 MHz, CDCl3): d=0.3 ppm; 1H NMR
(400 MHz, CDCl3): d=7.16 (s, 2H; Ar-H), 1.03 (d, 3J(H,P)=13.7 Hz,
9H; C(CH3)3), 0.31 ppm (s, 18H; Si(CH3)3); 13C{1H} NMR (100.6 MHz,
CDCl3): d=147.3 (d, 2J(C,P)=15.9 Hz; Ar), 147.0 (d, 1J(C,P)=35.4 Hz;
Ar), 141.6 (d, J(C,P)=3.7 Hz; Ar), 133.3 (d, 2J(C,P)=16.4 Hz; o-Ar),
32.3 (d, 1J(C,P)=12.4 Hz; CMe3), 27.5 (d, 2J(C,P)=14.3 Hz; C(CH3)3),
À0.1 ppm (s, SiC3); elemental analysis calcd (%) for C20H25PS2Si2 (396.7):
C 54.50, H 7.37, S 16.17; found: C 55.80, H 7.60, S 15.78.
Synthesis of 11: Elemental sulfur (100 mg, 3.1 mmol) was added to a solu-
tion of 6 (1.25 g, 3 mmol) in THF (20 mL) at room temperature and the
reaction mixture was stirred for 16 h. Subsequently, the solvent was re-
moved under vacuum and the residue taken up in warm hexane (10 mL).
Slow evaporation of the solvent provided 11 as yellow crystals (1.24 g,
92% yield).
Synthesis of 8 and 9: nBuLi (4 mL, 10 mmol) was added dropwise to a
solution of 5 (2.78 g, 5 mmol) and TMEDA (1.51 mL, 10 mmol) in Et2O
(50 mL) at À788C. The solution was stirred for 1 h before the tempera-
ture was raised to ca. À308C. Subsequently, RPCl2 (R=Ph: 0.90 g,
5 mmol; R=4-tBuPh: 1.18 g, 5 mmol), dissolved in Et2O(10 mL), was
added slowly to the reaction mixture and the resulting mixture was al-
lowed to warm quickly to room temperature. The solvent was then re-
moved under vacuum, the residue taken up in pentane (ca. 60 mL) and
filtered to remove LiCl. The filtrate was concentrated and left to crystal-
lize at À308C. Compounds 8 and 9 were obtained as white amorphous
solids (8: 2.0 g, 81% yield; 9: 2.2 g, 78% yield).
Compound 8: 31P{1H} NMR (80.9 MHz, CDCl3): d=À27.4 ppm; 1H
NMR (500 MHz, CDCl3): d=7.38 (m, 2H; o-Ph), 7.30 (m, 3H; Ph-H),
7.26 (s, 2H; Ar-H), 0.94 (s, 18H; Si-tBu), 0.32 (s, 6H; SiMe2), 0.31 ppm
(s, 6H; SiMe2); 13C{1H} NMR (125.7 MHz, CDCl3): d=148.7 (d, 1J
(C,P)=9.7 Hz; ipso-Ar), 147.0 (d, J(C,P)=3.2 Hz; Ar), 139.8 (d, J(C,P)=
4.3 Hz; Ar), 134.3 (d, 2J(C,P)=18.3 Hz; o-Ar), 134.2 (d, 1J(C,P)=
15.0 Hz; ipso-Ph), 132.5 (d, 2J(C,P)=20.4 Hz; o-Ar), 129.1 (s; p-Ph),
128.5 (d, 3J(C,P)=8.6 Hz; m-Ph), 26.4 (s; SiC(CH3)3), 17.0 (s; SiC(CH3)3),
À4.9 ppm (s; SiMe2); elemental analysis calcd (%) for C26H37PS2Si2
(500.9): C 62.35, H 7.45, S 12.80; found: C 62.75, H 7.28, S 12.76.
Compound 9: 31P{1H} NMR (80.9 MHz, CDCl3): d=À28.2 ppm; 1H
NMR (500 MHz, CDCl3): d=7.30 (br, 2H; Ar-H), 7.27 (br, 2H; Ar-H),
7.24 (br, 2H; Ar-H), 1.26 (s, 9H; C(CH3)3), 0.92 (s, 18H; Si-tBu), 0.29 (s,
6H; SiMe2), 0.28 ppm (s, 6H; SiMe2); 13C{1H} NMR (125.7 MHz,
CDCl3): d=152.3 (s; p-Ar), 148.8 (d, J(C,P)=10.7 Hz; Ar), 146.8 (d, J
(C,P)=2.1 Hz; Ar), 139.5 (d, J(C,P)=4.3 Hz; Ar), 134.5 (d, 2J(C,P)=
18.3 Hz; o-Ar), 132.3 (d, 2J(C,P)=21.5 Hz; o-Ar), 130.4 (d, 1J(C,P)=
14.0 Hz; ipso-Ar), 125.7 (d, 3J(C,P)=6.4 Hz; m-Ar), 34.1 (s; CMe3), 31.2
(s; C(CH3)3), 26.4 (s; SiC(CH3)3), 17.0 (s; SiCMe3), À4.8 (s; SiMe),
À4.9 ppm (s; SiMe); elemental analysis calcd (%) for C30H45PS2Si2
(557.0): C 64.70, H 8.14, S 11.51; found: C 65.03, H 8.96, S 10.76.
31P{1H} NMR (162.0 MHz, CDCl3): d=23.6 ppm; 1H NMR (400 MHz,
CDCl3): d=7.78 (br, 2H; o-Ph), 7.47 (br, 1H; p-Ph), 7.38 (br, 2H; m-
Ph), 7.17 (d, 2J(H,P)=2.3 Hz, 2H; Ar-H), 0.28 ppm (s, 18H; Si(CH3)3);
13C{1H} NMR (100.6 MHz, CDCl3): d=148.9 (d, J(C,P)=21.1 Hz; Ar),
145.9 (d, J(C,P)=11.1 Hz; Ar), 143.2 (d, 1J(C,P)=90.8 Hz; ipso-Ar),
4
2
131.8 (d, J(C,P)=3.2 Hz; p-Ph), 131.3 (d, J(C,P)=14.1 Hz; o-Ar), 130.7
(d, 2J(C,P)=12.4 Hz; o-Ar), 129.9 (d, 1J(C,P)=84.0 Hz; ipso-Ph), 128.6
(d, 3J(C,P)=13.4 Hz; m-Ph), À0.4 ppm (s; SiC3); MS (70 eV, EI): m/z
(%): 448 (100) [M+], 433 (10) [M+ÀMe], 371 (85) [M+ÀPh], 73 (30)
[SiMe3+]; elemental analysis calcd (%) for C20H25PS3Si2 (448.8): C 53.53,
H 5.62, S 21.44; found: C 53.52, H 5.52, S 21.09.
Synthesis of 12: BH3·SMe2 (3.3 mL, 3.3 mmol) was added to a solution of
6 (1.25 g, 3 mmol) in CH2Cl2 (20 mL) at room temperature and the reac-
tion mixture was stirred for 1 h. Subsequently, all volatile materials were
removed under vacuum to provide 12 as yellowish crystals (1.28 g, 99%
yield).
31P{1H} NMR (162.0 MHz, CDCl3): d=12.1 ppm (br); 11B{1H} NMR
(128.4 MHz, CDCl3): d=À39.4 ppm; 1H NMR (400 MHz, CDCl3): d=
7.60 (dd, 3J(H,P)=11.7, 3J(H,H)=7.5 Hz, 2H; o-Ph), 7.50 (brt, 3J
(H,H)=7.5 Hz, 1H; p-Ph), 7.36 (brt, 3J(H,H)=7.5 Hz, 2H; m-Ph), 7.17
(d, 3J(H,P)=1.1 Hz, 2H; Ar-H), 1.1 (very broad, 3H; BH3), 0.30 ppm (s,
18H; Si(CH3)3); 13C{1H} NMR (100.6 MHz, CDCl3): d=149.7 (d,
J
(C,P)=11.5 Hz; Ar), 145.4 (d, J(C,P)=8.7 Hz; Ar), 140.5 (d, 1J(C,P)=
59.6 Hz; ipso-Ar), 132.1 (d, 2J(C,P)=14.3 Hz; o-Ar), 131.8 (d, 2J(C,P)=
10.9 Hz; o-Ar), 131.6 (s; p-Ph), 130.1 (d, 1J(C,P)=94.1 Hz; ipso-Ar),
128.8 (d, 3J(C,P)=10.6 Hz; m-Ph), À0.3 ppm (s; SiC3); MS (70 eV, EI):
m/z (%): 430 (8) [M+], 416 (100) [M+ÀBH3], 73 (25) [SiMe3+]; elemen-
tal analysis calcd (%) for C20H28BPS2Si2 (430.5): C 55.80, H 6.56, S 14.90;
found: C 55.92, H 6.57, S 14.89.
Synthesis of 13: [Pd(cod)Cl2] (0.12 g, 0.4 mmol) was added to a solution
of 6 (0.34 g, 0.8 mmol) in CHCl3 (30 mL) at room temperature and stir-
red for another 30 min. Subsequent evaporation of all volatiles under
vacuum provided 13 as a yellow powder in quantitative yield (0.40 g,
99%). Recrystallization from toluene provided orange crystals suitable
for X-ray structure analysis.
31P{1H} NMR (162.0 MHz, CDCl3): d=1.5 ppm (8.9 (0.3 equiv)); 1H
NMR (400 MHz, CDCl3): d=7.78 (brm, 2H; o-Ph), 7.69 (br, 2H; m-Ph)
(6.70 (0.3 equiv)), 7.33–7.22 (brm, 3H; Ar), 0.30 ppm (s, 18H; Si(CH3)3)
(0.24 (0.3 equiv)); 13C{1H} NMR (100.6 MHz, CDCl3): d=148.7 (t, 2J
(C,P)=7.5 Hz; Ar), 143.3 (br; Ar), 139.9 (t, J(C,P)=26.5 Hz; Ar), 135.8
(t, 1J(C,P)=5.6 Hz; Ar), 132.9 (dd, 1J(C,P)=311.9, 17.1 Hz; ipso-Ar),
132.7 (d, J(C,P)=7.2 Hz; Ar), 130.6 (s; p-Ph), 128.6 (t, 3J(C,P)=5.6 Hz;
m-Ph), À0.2 ppm (s; SiC3); elemental analysis calcd (%) for
C40H50Cl2P2PdS4Si4 (1010.7): C 47.53, H 4.99, S 12.69; found: C 47.65, H
4.94, S 13.14.
Synthesis of 10: Hydrogen peroxide (0.5 g, 3.3 mmol, 30% solution in
H2O) was added to a solution of 6 (1.25 g, 3 mmol) or 8 (1.50 g, 3 mmol)
in THF (20 mL) at room temperature. The reaction mixture was stirred
for 16 h. Subsequently, all volatile materials were removed under vacuum
and the residue taken up in warm hexane (10 mL). Slow evaporation of
the solvent provided 10a as light yellow crystals and 10b as colorless
crystals (10a: 1.23 g, 95% yield; 10b: 1.50 g, 97% yield).
Compound 10a: 31P{1H} NMR (162.0 MHz, CDCl3): d=17.2 ppm; 1H
NMR (400 MHz, CDCl3): d=7.73 (dd, 3J(H,P)=13.4, 3J(H,H)=7.4 Hz,
2H; o-Ph), 7.50 (td, 3J(H,H)=7.4, 4J(C,P)=2.0 Hz, 1H; p-Ph), 7.40 (td,
3
2
3J(H,H)=7.8, J(H,P)=3.1 Hz, 2H; m-Ph), 7.16 (d, J(H,P)=2.1 Hz, 2H;
Ar-H), 0.28 ppm (s, 18H; Si(CH3)3); 13C{1H} NMR (100.6 MHz, CDCl3):
d=150.6 (d, J(C,P)=24.9 Hz; Ar), 145.5 (d, J(C,P)=11.0 Hz; Ar), 140.7
(d, 1J(C,P)=108.6 Hz; ipso-Ar), 132.1 (s; p-Ph), 132.0 (d, 2J(C,P)=
13.0 Hz; o-Ar), 130.8 (d, 3J(C,P)=11.4 Hz; m-Ph), 129.9 (d, 1J(C,P)=
2
107.5 Hz; ipso-Ph), 128.6 (d, J(C,P)=13.0 Hz; o-Ar), À0.3 ppm (s; SiC3);
Chem. Eur. J. 2005, 11, 4687 – 4699
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4697