17 S.-G. Chen, H. M. Branz, S. S. Eaton, P. C. Taylor, R. A. Cormier
and B. A. Gregg, J. Phys. Chem. B, 2004, 108, 17329.
18 B. A. Gregg, J. Phys. Chem. B, 2004, 108, 17285.
19 B. A. Gregg, S.-G. Chen and R. A. Cormier, Chem. Mater., 2004,
16, 4586.
20 B. A. Gregg, S.-G. Chen and H. M. Branz, Appl. Phys. Lett., 2004,
84, 1707.
21 S.-G. Chen, P. Stradins and B. A. Gregg, J. Phys. Chem. B, 2005,
109, 13451.
22 B. L. Langsdorf, X. Zhou, D. H. Adler and M. C. Lonergan,
Macromolecules, 1999, 32, 2796.
23 M. C. Lonergan, C. H. Cheng, B. L. Langsdorf and X. Zhou,
J. Am. Chem. Soc., 2002, 124, 690.
24 C. H. W. Cheng and M. C. Lonergan, J. Am. Chem. Soc., 2004,
126, 10536.
25 C. H. W. Cheng, S. W. Boettcher, D. H. Johnston and
M. C. Lonergan, J. Am. Chem. Soc., 2004, 126, 8666.
26 K. Harada, A. G. Werner, M. Pfeiffer, C. J. Bloom, C. M. Elliott
and K. Leo, Phys. Rev. Lett., 2005, 94, 036601.
27 W. Gao and A. Kahn, Appl. Phys. Lett., 2001, 79, 4040.
28 T. P. Vaid, A. K. Lytton-Jean and B. C. Barnes, Chem. Mater.,
2003, 15, 4292.
29 J. A. Cissell, T. P. Vaid and A. L. Rheingold, J. Am. Chem. Soc.,
2005, 127, 12212.
30 X. Deng, W. W. Porter, III and T. P. Vaid, Polyhedron, 2005, 24,
3004.
Conclusions
Our goal in this study was to create a dopant for a molecular
semiconductor that fulfilled two criteria: (1) the dopant would
substitutionally cocrystallize with the semiconductor to yield
immobile dopant ions in the doped semiconductor, and (2) the
dopant would spontaneously transfer an electron to the mole-
cular semiconductor in the solid state. The electrochemical
redox potentials of 1 and 2, along with their similar overall
molecular size and shape, led us to believe that they would
fulfil the roles as an appropriate molecular semiconductor and
dopant, respectively. Evidence for substitutional cocrystalliza-
tion was found in the similar powder X-ray diffraction
patterns of pure 1 and 1 cocrystallized with 2. Additional
evidence for substitutional cocrystallization comes from the
increased electrical conductivity of 1 doped with 2 compared to
pure 1, as both 2 and 2+12 have significantly lower conduc-
tivity than pure 1. And, of course, the increased conductivity in
doped 1 compared to pure 1 is evidence that criterion (2) has
been fulfilled. There was no indication of ionic conductivity in
doped 1, confirming that the 2+ dopants are immobile.
Systems such as the one presented herein will lead to new
organic semiconductor devices that utilize true p–n junctions.
31 W. W. Porter, III and T. P. Vaid, J. Org. Chem., 2005, 70, 5028.
32 W. W. Porter, III, T. P. Vaid and A. L. Rheingold, J. Am. Chem.
Soc., 2005, 127, 16559.
33 J. A. Cissell, T. P. Vaid and A. L. Rheingold, Inorg. Chem., 2006,
45, 2367.
Acknowledgements
34 F. Strohbusch, Ber. Bunsen-Ges. Phys. Chem., 1972, 76, 622.
35 E. M. Arnett, K. E. Molter, E. C. Marchot, W. H. Donovan and
P. Smith, J. Am. Chem. Soc., 1987, 109, 3788.
36 G. Humburg, H. Berger and W. Kaufmann, German patent,
3 428 170, 1986.
37 E. Weitz, L. Muller and K. Dinges, Chem. Ber., 1952, 85, 878.
38 U. Jahn, P. Hartmann, I. Dix and P. G. Jones, Eur. J. Org. Chem.,
2001, 3333.
We thank David Sloop for assistance in acquiring ESR spectra
and Anup Gangopadhyay for assistance with the PPMS.
Funding was provided by the National Science Foundation
grant CHE 0133068.
39 J. B. Shoesmith, C. E. Sosson and A. C. Hetherington, J. Chem.
Soc., 1927, 2221.
References
40 K. Ziegler and E. Boye, Liebigs Ann. Chem., 1927, 458, 248.
41 WINEPR SimFonia 1.25, shareware version, Bruker BioSpin,
Billerica, MA, 1996.
1 G. Malliaras and R. Friend, Phys. Today, 2005, 58, 53.
2 S. R. Forrest, Nature, 2004, 428, 911.
3 S. A. Jenekhe, Chem. Mater., 2004, 16, 4381.
4 G. Horowitz, J. Mater. Res., 2004, 19, 1946.
5 C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bredas,
P. C. Ewbank and K. R. Mann, Chem. Mater., 2004, 16, 4436.
6 H. E. Katz, Chem. Mater., 2004, 16, 4748.
7 S. E. Shaheen, D. S. Ginley and G. E. Jabbour, MRS Bull., 2005,
30, 10.
8 K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533.
9 A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chem.
Mater., 2004, 16, 4556.
42 D. F. Evans, J. Chem. Soc., 1959, 2003.
43 P. Andersen and B. Klewe, Acta Chem., Scand., 1967, 21, 2599.
44 G. N. Lewis, D. Lipkin and T. T. Magel, J. Am. Chem. Soc., 1944,
66, 1579.
45 T. L. Chu, G. E. Pake, D. E. Paul, J. Townsend and S. I. Weissman,
J. Phys. Chem., 1953, 57, 504.
46 M. T. Jones, J. Chem. Phys., 1961, 35, 1146.
47 M. T. Jones and S. I. Weissman, J. Am. Chem. Soc., 1962, 84, 4269.
48 D. Duennebacke, W. P. Neumann, A. Penenory and U. Stewen,
Chem. Ber., 1989, 122, 533.
10 J. Xue, B. P. Rand, S. Uchida and S. R. Forrest, Adv. Mater., 2005,
17, 66.
11 S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons,
Inc., New York, 1981.
49 R. G. Compton, B. A. Coles, G. M. Stearn and A. M. Waller,
J. Chem. Soc., Faraday Trans. 1, 1988, 84, 2357.
50 R. G. Compton and R. G. Wellington, J. Phys. Chem., 1994, 98,
270.
12 H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and
A. J. Heeger, J. Chem. Soc., Chem. Commun., 1977, 578.
13 C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger,
H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid,
Phys. Rev. Lett., 1977, 39, 1098.
14 C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis,
A. G. MacDiarmid, Y. W. Park and H. Shirakawa, J. Am. Chem.
Soc., 1978, 100, 1013.
15 C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G.
MacDiarmid and A. J. Heeger, Appl. Phys. Lett., 1978, 33, 18.
16 B. A. Gregg and R. A. Cormier, J. Am. Chem. Soc., 2001, 123,
7959.
51 F. Li, A. Werner, M. Pfeiffer, K. Leo and X. Liu, J. Phys. Chem. B,
2004, 108, 17076.
52 S. Lovell, B. J. Marquardt and B. Kahr, J. Chem. Soc., Perkin
Trans. 2, 1999, 2241.
53 M. T. Watts, M. L. Lu, R. C. Chen and M. P. Eastman, J. Phys.
Chem., 1973, 77, 2959.
54 H. Volz and W. Lotsch, Tetrahedron Lett., 1969, 2275.
55 I. Nemcova and I. Nemec, J. Electroanal. Chem. Interfacial
Electrochem., 1971, 30, 506.
56 S. K. Mandal, M. E. Itkis, X. Chi, S. Samanta, D. Lidsky,
R. W. Reed, R. T. Oakley, F. S. Tham and R. C. Haddon, J. Am.
Chem. Soc., 2005, 127, 8185.
This journal is ß The Royal Society of Chemistry 2007
J. Mater. Chem., 2007, 17, 469–475 | 475