Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC06428K
COMMUNICATION
Journal Name
11 (a) H. Q. Li, H. Neumann, M. Beller and X.-F. Wu, Angew.
Chem. Int. Ed., 2014, 126, 3247–3250; (b) K. T. Neumann, S.
R. Laursen, A. T. Lindhardt, B. B. Bang-Andersen and T.
Skrydstrup, Org. Lett., 2014, 16, 2216–2219; (c) X. X. Qi, L. B.
Oxidative addition of N-acylsaccharin to the Pd(0)-species
generates an acylpalladium complex II; complexation of the
alkyne to complex II proceeds with displacement of one ligand
to give intermediate complex III. The ligated alkyne would be
more easily deprotonated by the triethylamine, forming the
new complex IV. Finally, the complex undergoes reductive
elimination to form the C-C bond and regeneration of Pd(0)-
species.22
Jiang, C. L. Li, R. Li and X.-F. Wu, Chem. Asian. J., 2015, 10
1870–1873;
,
12 (a) C. Boersch, E. Merkul and T. J. Müller, Angew. Chem. Int.
Ed., 2011, 50, 10448–10452; (b) W. Kim, K. Park, A. Park, J.
Choe and S. Lee, Org. Lett., 2013, 15, 1654–1657; (c) H. Tan,
H. J. Li, W. Q. Ji and L. Wang, Angew, Chem. Int. Ed., 2015,
54, 8374–8377; (d) Q.-Q. Zhou, W. Guo, W. Ding, X. Xu, X.
Chen, L. Q. Lu and W.-J. Xiao, Angew. Chem. Int. Ed., 2015,
54, 11196–11199;
13 (a) J. A. Morales-Serna, A. Sauza, G. P. D. Jesusús, R. Gaviño,
G. G. D. L. Mora and J. Cárdenas, Tetrahedron Lett., 2013, 54,
7111–7114; (b) B. Yu, H. M. Sun, Z. Y. Xie, L. W. Xu, W. Q.
In conclusion, we have reported the first general method for
the palladium-catalyzed Sonogashira coupling of amides with
terminal alkynes via cleavage of amide C-N bond. The study of
the substrate scope showed that various terminal alkynes and
N-acylsacchrins were selectively converted into the
corresponding ynones in high selectivity and good yields.
Remarkably, the transformation was achieved under low
catalyst loading and Cu-free condition. Furthermore, this work
provides the first example of the use of N-acylsacchrins as
electrophilic acyl precursor for synthesis of ynones by the C-N
activation of amide bonds.
Zhang and Z. W. Gao, Org. Lett., 2015, 17, 3298–3301;
14 (a) Z. F. Wang, Y. Huang, J. Am. Chem. Soc., 2014, 136
,
12233–12236; (b) Y. Ogiwara, M. Kubota, K. Kurogi, T.
Konakahara and N. Sakai, Chem. Eur. J., 2015, 21, 18598–
18600; (c) S. Tang, L. Zeng, Y. C. Liu and A. W. Lei, Angew.
Chem. Int. Ed., 2015, 54, 15850–15853; (d) H. Wang, F. Xie, Z.
S. Qi and X. W. Li, Org. Lett., 2015, 17, 920–923;
The authors gratefully acknowledge the support of National
Natural Science Foundation of China (21272080). The Scientific
Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry.
15 S. Nahm and S. N. Weinreb, Tetrahedron Lett., 1981, 22
3815–3818;
16 (a) L. Pauling, R. B. Corey and H. R. Branson, Proc. Natl Acad.
Sci. U. S. A., 1951, 37, 205–211; (b) S. J. Blanksby, G. B.
Ellison, Acc. Chem. Res., 2003, 36, 255–263;
,
17 L. Hie, N. F. Fine Nathel, T. K. Shan, E. L. Baker, X. Hong, Y.-F.
Yang, P. Liu, K. N. Houk and N. K. Garg, Nature., 2015, 524,
Notes and references
79–83;
18 B. J. Simmons, N. A. Weires, J. E. Dander and N. K. Garg, ACS
Catal., 2016, , 3176-3179;
19 (a) X. J. Li and G. Zou, Chem. Commun., 2015, 51, 5089–5092;
(b) G. R. Meng and M. Szostak, Org. Lett., 2015, 17, 4364–
4367; (c) N. A. Weires, E. A. Baker, N. K. Garg, Nat. Chem.,
6
1
2
H. S. Cho, Y. J. Kim, J. Kwak and Chang. S, Chem. Soc. Rev.,
2011, 40, 5068–5083;
(a) A. R. Muci, and S. L. Buchwald, Top. Curr. Chem., 2002,
219, 131–209; (b) S. Cacchi and G. Fabrizi, Chem. Rev., 2005,
105, 2873–2920; (c) J. Bariwal and E. V. D. Eycken, Chem.
Soc. Rev., 2013, 42, 9283–9303; (d) T. Wang and N. Jiao, Acc.
Chem. Res., 2014, 47, 1137–1145;
2015, 8, 75–79;
20 G. R. Meng, M. Sazostak, Angew. Chem. Int. Ed., 2015, 54
14518–14522;
,
21 (a) T. Lectka and C. Cox, Acc. Chem. Res., 2000, 33, 849–858;
(b) Y. Lei, A. D. Wrobleski, J. E. Golden, D. R. Powell and J.
Aubé, J. Am. Chem. Soc., 2005, 127, 4552–4553; (c) M.
Szostak, J. Aubé, Chem. Rev., 2013, 113, 5701–5765; (d) R.
3
(a) S. J. Blanksby and G. B. Ellison, Acc. Chem. Res. 2003, 36,
255–263; (b) K. B. Ouyang, W. Hao, W. X. Zhang, and Z. F. Xi,
Chem. Rev., 2015, 115, 12045–12090;
4
5
Q. J. Wang, Y. J. Su, L. X. Li and H. M. Huang, Chem. Soc. Rev.,
2016, 45, 1257–1272;
(a) R. E. Whittaker, A. Dermenci and G. B. Dong, Synthesis.,
2016, 48, 161-183; (b) C. J. Forsyth, J. Y. Xu, S. T. Nguyen, I. A.
Samdal, L. R. Briggs, T. Sandvik, M. Runderget and C. O.
Miles, J. Am. Chem. Soc., 2006, 128, 15114–15116;
Szostak, J. Aubé and M. Szostak, Chem. Commun., 2015, 51
,
6395–6398; (e) F. Hu, R. Lalancette and M. Szostak, Angew.
Chem. Int. Ed., 2016, 128, 5146–5150;
22 (a) R. Chinchilla and C. Nájera, Chem. Rev., 2007, 107, 874–
922; (b) R. Chinchilla and C. Nájera, Chem. Soc. Rev., 2011,
40, 5084–5121;
6
(a) Q. F. Huang and R. M. Hua, Chem. Eur. J., 2007, 13, 8333–
8337; (b) M. Ueda, A. Sato, Y. Ikeda, T. Miyoshi, T. Naito and
O. Miyata, Org. Lett., 2010, 12, 2594–2597; (c) L. Wang, G. J.
Li and Y. H. Liu, Org. Lett., 2011, 13, 3786–3789; (d) B. Willy
and T. J. J. Müller, Org. Lett., 2011, 13, 2082-2085; (e) J. D.
Kirkham, S. J. Edeson, S. Stokes and J. P. A. Harrity, Org. Lett.,
2012, 14, 5354–5357; (f) S. L. Shi and M. kanai, Angew.
Chem. Int. Ed., 2012, 51, 3932–3935; (g) A. Dermenci, R. E.
Whittaker, Y. Gao, F. A. Yu, Z. X. Cruz and G. B. Dong, Chem.
Sci. 2015, 6, 3201–3210;
7
(a) K. C. Nicolaou, D. Sarlah and D. M. Shaw, Angew. Chem.
Int. Ed., 2007, 119, 4792–4795; (b) W. P. Unsworth, J. D.
Cuthbertson, R. J. K. Taylor, Org. Lett., 2013, 15, 3306–3309;
M. W. Logue and G. L. Moore, J. Org. Chem. 1975, 40, 131–
132;
8
9
(a) A. S. Karpov and T. J. Müller, Org. Lett., 2003, 5, 3451–
3454; (b) L. Chen and C.-J. Li, Org. Lett., 2004, 6, 3151–3153;
10 (a) X.-F. Wu, H. Neumann and M. Beller, Chem. Soc. Rev.,
2011, 40, 4986–5009; (b) W. Y. Kim, K. Park, A. Park, J. Choe
and S. Lee, Org. Lett., 2013, 15, 1654–1657;
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins