2036
E. Merisor et al.
LETTER
2¢), 114.4 (C-5), 116.9 (C-7), 123.9 (C-9), 124.61 (C-8),
125.4 (C-6), 137.09 (C-10), 144.3 (C-1¢), 155.3 (C=O). MS
(EI, 70 eV): m/z (%) = 232 (100) [M+], 218 (8), 199 (14), 191
(40), 173 (21), 157 (18), 131 (40), 106 (7), 77 (7). Anal.
Calcd for C13H16N2O2: C, 67.22; H, 6.94; N, 12.06. Found:
C, 67.43; H, 7.01; N, 11.99.
Acknowledgment
We thank Mrs. I. Klaiber and Dr. R. Frank for the recording of
spectra.
References and Notes
2''
(1) Torisu, K.; Kobayashi, K.; Iwahashi, M.; Nakai, Y.; Onoda,
T.; Nagase, T.; Sugimoto, I.; Okada, Y.; Matsumoto, R.;
Nanbu, F.; Ohuchida, S.; Nakai, H.; Toda, M. Bioorg. Med.
Chem. 2004, 12, 5361.
(2) Ohtake, Y.; Naito, A.; Hasegawa, H.; Kawano, K.;
Morizono, D.; Taniguchi, M.; Tanaka, Y.; Matsukawa, H.;
Naito, K.; Oguma, T.; Ezure, Y.; Tsuriya, Y. Bioorg. Med.
Chem. 1999, 7, 1247.
2'
1''
5
1'
N 4
10
3'
6
7
3
2
9
N1
8
Me
O
O
3a
(3) (a) Barrows, T. H.; Farina, P. R.; Chrzanowski, R. L.;
Benkovic, P. A.; Benkovic, S. J. J. Am. Chem. Soc. 1976, 98,
3678. (b) Fisher, G. H.; Schultz, H. P. J. Org. Chem. 1974,
39, 631. (c) Benkovic, S. J.; Barrows, T. H.; Farina, P. R.
J. Am. Chem. Soc. 1973, 95, 8414.
(4) (a) Pitts, M. R.; Harrison, J. R.; Moody, C. J. J. Chem. Soc.,
Perkin Trans. 1 2001, 955. (b) Taylor, E. C.; McKillop, A.
J. Am. Chem. Soc. 1965, 87, 1984. (c) Cavagnol, J. C.;
Wiselogle, F. Y. J. Am. Chem. Soc. 1947, 69, 795.
(5) (a) Yang, S.-C.; Liu, P.-C.; Feng, W.-H. Tetrahedron Lett.
2004, 45, 4951. (b) Yang, S.-C.; Shue, Y.-J.; Liu, P.-C.
Organometallics 2002, 21, 2013. (c) Massacret, M.; Lhoste,
P.; Sinou, D. Eur. J. Org. Chem. 1999, 129.
(6) Nair, V.; Dhanya, R.; Rajesh, C.; Bhadbhade, M. M.; Manoj,
K. Org. Lett. 2004, 6, 4743.
(7) Bunce, R. A.; Herron, D. M.; Ackerman, M. L. J. Org.
Chem. 2000, 65, 2847.
(8) (a) Bunce, R. A.; Herron, D. M.; Hale, L. Y. J. Heterocycl.
Chem. 2003, 40, 1031. (b) Rylander, P. N. Hydrogenation
Methods; Academic Press: New York, 1985, 82–93.
(9) Tapia, R. A.; Centella, C. R.; Valderrama, J. A. Synth.
Commun. 1999, 29, 2163.
(10) (a) LaBarbera, D. V.; Skibo, E. B. Bioorg. Med. Chem.
2005, 13, 387. (b) Krchňák, V.; Smith, J.; Vagner, J.
Tetrahedron Lett. 2001, 42, 2443.
Figure 4
(13) Selected Data for 3a (Figure 4):
Rf 0.59 (PE–EtOAc, 20:1). IR (ATR): 2980, 2958 (Me,
CH2), 1702 (C=O), 1602, 1504 (C=C), 1438, 1375, 1344
(COO–), 1217, 1190, 1145, 1062 (=COC), 899, 733 cm–1.
UV–Vis (EtOH): lmax (log e) = 310 (2.49), 258 (2.41), 223
(2.35) nm. 1H NMR (300 MHz, CDCl3): d = 1.17 (t, 3J = 7.1
Hz, 3 H, 2¢¢-Me), 1.80 (s, 3 H, 3¢-Me), 3.15–3.27 (over-
lapped, 2 H, 1¢¢-CH2), 3.52 (dd, 2J = 13.1 Hz, 3J = 7.1 Hz, 1
H, 2-H), 3.76 (s, 3 H, OMe), 3.94 (t, 3J = 7.1 Hz, 1 H, 3-H),
4.37 (dd, 2J = 12.9 Hz, 3J = 7.1 Hz, 1 H, 2-H), 4.81 (br s, 1
H, 2¢-H), 4.93 (br s, 1 H, 2¢-H), 6.62 (dd, 3J = 8.1 Hz, 4J = 1.1
Hz, 1 H, 5-H), 6.75 (ddd, 3J = 7.8, 8.1 Hz, 4J = 1.2 Hz, 1 H,
7-H), 7.06 (ddd, 3J = 7.8, 8.1 Hz, 4J = 1.2 Hz, 1 H, 6-H), 7.4
(br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): d = 11.76 (C-
2¢¢), 19.60 (C-3¢), 43.50 (C-1¢¢), 43.82 (C-2), 53.12 (OMe),
62.76 (C-3), 110.56 (C-2¢), 113.5 (C-5), 115.1 (C-7), 124.3
(C-9), 124.7 (C-8), 125.8 (C-6), 137.9 (C-10), 143.06 (C-1¢),
155.4 (C=O). MS (EI, 70 eV): m/z (%) = 260 (100) [M+], 245
(16), 231 (26), 219 (58), 213 (12), 190 (34), 171 (20), 159
(30), 131 (27), 119 (6), 92 (3), 77 (12), 41 (3), 28 (3). HRMS
(EI): m/z [M+] calcd for C15H20N2O2: 260.1525; found:
260.1507.
(11) Merisor, E.; Conrad, J.; Klaiber, I.; Mika, S.; Beifuss, U.
Angew. Chem. Int. Ed. 2007, 46, 3353.
(12) Selected Data for 2a (Figure 3):
(14) Adam, W.; Krebs, O. Chem. Rev. 2003, 103, 4131.
(15) (a) Söderberg, B. C. G. Curr. Org. Chem. 2000, 4, 727.
(b) Cadogan, J. I. G. Q. Rev., Chem. Soc. 1968, 22, 222.
(16) Scheme 3 shows a mechanism involving a triplet nitrene.
However, the occurrence of a singlet nitrene cannot be ruled
out.
(17) (a) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250.
(b) Appukkuttan, P.; Van der Eycken, E.; Dehaen, W. Synlett
2005, 127.
(18) General Procedure for the Synthesis of Alkenyl-1,2,3,4-
tetrahydroquinoxalines under Microwave Conditions:
A solution of 1a (1 mmol), (EtO)3P (6 mmol) and toluene (3
mL) in a 10-mL septum-sealed reaction vial was irradiated
with microwaves (DiscoverTM by CEM; 2450 MHz; 300 W;
200 °C). After removal of (EtO)3P and (EtO)3PO (10–1 mbar)
the residue was taken up in EtOAc (25 mL) and washed with
brine (3 × 20 mL). The residue obtained after drying over
MgSO4 and after concentration in vacuo was purified by
flash chromatography on silica gel (PE–EtOAc, 20:1).
(19) Hoeke, F. Recl. Trav. Chim. Pays-Bas 1935, 54, 505.
(20) Mohri, K.; Suzuki, K.; Usui, M.; Isobe, K.; Tsuda, Y. Chem.
Pharm. Bull. 1995, 43, 159.
Rf 0.40 (PE–EtOAc, 20:1). IR (ATR): 3376 (NH), 2952,
2854 (Me, CH2), 1691 (C=O), 1604, 1501 (C=C), 1435,
1382, 1372 (COO–), 1232, 1211, 1146, 1061 (=COC), 900,
760, 741 cm–1. UV–Vis (EtOH): lmax (log e) = 307 (2.48),
253 (2.40), 220 (2.34) nm. 1H NMR (300 MHz, CDCl3): d =
1.85 (s, 3 H, 3¢-Me), 3.58 (dd, 2J = 12.3 Hz, 3J = 6.2 Hz, 1 H,
2-H), 3.81 (s, 3 H, OMe), 3.98 (dd, 3J = 3.4, 6.2 Hz, 1 H, 3-
H), 4.02 (dd, 2J = 12.3 Hz, 3J = 3.3 Hz, 1 H, 2-H), 4.98 (br s,
1 H, 2¢-H), 5.05 (br s, 1 H, 2¢-H), 6.65 (dd, 3J = 8.0 Hz, 4J =
1.4 Hz, 1 H, 5-H), 6.70 (ddd, 3J = 7.4, 8.2 Hz, 4J = 1.5 Hz, 1
H, 7-H), 6.97 (ddd, 3J = 7.4, 7.9 Hz, 4J = 1.4 Hz, 1 H, 6-H),
7.48 (br s, 1 H, 8-H). 13C NMR (75 MHz, CDCl3): d = 19.57
(C-3¢), 45.25 (C-2), 53.24 (OMe), 56.72 (C-3), 112.87 (C-
2'
H
5
N 4
1'
10
3'
6
7
3
2
9
N1
8
Me
O
O
(21) Greshock, T. J.; Funk, R. L. J. Am. Chem. Soc. 2002, 124,
754.
2a
(22) Broggini, G.; Garanti, L.; Molteni, G.; Zecchi, G. Synthesis
1996, 1076.
Figure 3
Synlett 2007, No. 13, 2033–2036 © Thieme Stuttgart · New York