Please do not adjust margins
ChemComm
Page 3 of 4
DOI: 10.1039/C5CC07787G
Journal Name
COMMUNICATION
HO
1.
2.
For selected reviews, see: a) B. Ernst and J. L. Magnani,
Nat. Rev. Drug Discovery, 2009, 8, 661; b) P. Stallforth, B.
Lepenies, A. Adibekian and P. H. Seeberger, J. Med. Chem.,
2009, 52, 5561; c) J. J. Reina and A. Bernardi, Mini-Rev.
Med. Chem., 2012, 12, 1434; d) C.-H. Wong,
Me
HO
O
OBn
Me
a) 15, 90%;
O
Me
O
b), 89%
O
OBn
23
18
a) 15, 90%;
b), 73%
Carbohydrate-based Drug Discovery, WILEY-VCH Verlag
GmbH & Co. KGaA,, Weinheim, 2003.
Me
HO
O
24
O
Me
For selected examples of deoxysugar synthesis, see: a) K.
C. Nicolaou, T. Ladduwahetty, J. L. Randall and A.
Chucholowski, J. Am. Chem. Soc., 1986, 108, 2466; b) J.
Gervay and S. Danishefsky, J. Org. Chem., 1991, 56, 5448;
c) W. R. Roush and X. F. Lin, J. Am. Chem. Soc., 1995, 117,
2236; d) W. R. Roush, D. P. Sebesta and C. E. Bennett,
Tetrahedron, 1997, 53, 8825; e) W. R. Roush, D. P.
Sebesta and R. A. James, Tetrahedron, 1997, 53, 8837; f)
W. R. Roush and C. E. Bennett, J. Am. Chem. Soc., 1999,
121, 3541; g) W. R. Roush, B. W. Gung and C. E. Bennett,
Org. Lett., 1999, 1, 891; h) B. Yu and Z. Y. Yang, Org. Lett.,
2001, 3, 377; i) B. Yu and P. Wang, Org. Lett., 2002, 4,
1919; j) A. F. G. Bongat, M. N. Kamat and A. V.
O
Me
O
OBn
O
a) ent-14, 82%;
b), 82%
OH
Me
O
Me
O
O
25
a) Pd2(dba)3 (2.5 mol%), PPh3 (10 mol%);
O
Me
O
Me
O
OBn
O
b) [Cp*RhCl2]2 (0.5 mol%), (R,R)-Ts-DPEN L2 (1.2 mol%), HCO2Na, 40 oC.
Scheme 4. Preparation of Tetrasaccharide by the Sequence of Pd-Catalysed Allylic
Alkylation and Chiral Catalyst-Controlled Reduction
Demchenko, J. Org. Chem., 2007, 72, 1480; k) E. I.
Balmond, D. M. Coe, M. C. Galan and E. M. McGarrigle,
Angew. Chem. Int. Ed., 2012, 51, 9152; l) J. P. Issa, D.
Lloyd, E. Steliotes and C. S. Bennett, Org. Lett., 2013, 15,
4170; m) K. N. Baryal, D. Zhu, X. Li and J. Zhu, Angew.
Chem. Int. Ed., 2013, 52, 8012; n) E. I. Balmond, D.
Benito-Alifonso, D. M. Coe, R. W. Alder, E. M. McGarrigle
and M. C. Galan, Angew. Chem. Int. Ed., 2014, 53, 8190;
o) J. P. Issa and C. S. Bennett, J. Am. Chem. Soc., 2014, 136,
5740; p) D. Zhu, K. N. Baryal, S. Adhikari and J. Zhu, J. Am.
Chem. Soc., 2014, 136, 3172; q) M. Kaneko and S. B.
Herzon, Org. Lett., 2014, 16, 2776; r) T. K. Pradhan, C. C.
Lin and K. K. T. Mong, Synlett, 2013, 24, 219; s) T. K.
Pradhan, C. C. Lin and K.-K. T. Mong, Org. Lett., 2014, 16,
1474; t) J.-H. Chen, J.-H. Ruei and K.-K. T. Mong, Eur. J.
Org. Chem., 2014, 1827.
To understand the mechanism of the tandem reduction in more
details, we studied the distribution of products using limited
amount of sodium formate reducing agent (Scheme 5). A mixture of
ketone 26, alcohol 18, and starting material 13 was obtained in 10%,
40%, and 50% yields, respectively, based on NMR of the crude
product. No allylic alcohol 27 was observed by NMR. This suggests
that the 1,4-reduction is much faster than the 1,2-reduction of
enone 13. The ratio of 26/18 also indicates that the reduction of
ketone 26 is faster than the 1,4-reduction of enone 13.
3.
For selected reviews, see: a) A. Kirschning, M. Jesberger
and K. U. Schoning, Synthesis, 2001, 507; b) W. Chen, G.
Zhang, L. Zhu, L. Fang, X. Cao, J. Kedenburg, J. Shen, D.
Sun and P. G. Wang, in Frontiers in Modern Carbohydrate
Chemistry, ed. A. V. Demchenko, 2007, vol. 960, pp. 15; c)
R. M. De Lederkremer and C. Marino, in Advances in
Carbohydrate Chemistry and Biochemistry, Vol 61, ed. D.
Horton, 2008, vol. 61, pp. 143; d) A. Borovika and P.
Nagorny, J. Carbohydr. Chem., 2012, 31, 255; e) M.
Emmadi and S. S. Kulkarni, Nat. Prod. Rep., 2014, 31, 870.
Y. Hayakawa, T. Iwakiri, K. Imamura, H. Seto and N. Otake,
J. Antibiot., 1985, 38, 960.
a) T. Henkel, J. Rohr, J. M. Beale and L. Schwenen, J.
Antibiot., 1990, 43, 492; b) S. Weber, C. Zolke, J. Rohr and
J. M. Beale, J. Org. Chem., 1994, 59, 4211.
L. M. Canedo, J. L. F. Puentes, J. P. Baz, X. H. Huang and K.
L. Rinehart, J. Antibiot., 2000, 53, 479.
a) S. Kunimoto, T. Someno, Y. Yamazaki, J. Lu, H. Esumi
and H. Naganawa, J. Antibiot., 2003, 56, 1012; b) T.
Someno, S. Kunimoto, H. Nakamura, H. Naganawa and D.
Ikeda, J. Antibiot., 2005, 58, 56.
A. Luzhetskyy, J. Hoffmann, S. Pelzer, S.-E. Wohlert, A.
Vente and A. Bechthold, Appl. Microbiol. Biotechnol.,
2008, 80, 15.
Scheme 5. Reduction with Limited Amount of Reducing Agent
In summary, we realized a divergent synthesis of all eight
stereoisomers 2,3,6-trideoxyhexopyranosides. The sequence
of Pd-catalysed glycosidation and chiral catalyst-controlled
tandem reduction can lead to a systematic de novo synthesis
of
all
stereoisomers
of
any
oligomeric
2,3,6-
trideoxyhexopyranosides. We expect that the chiral catalyst-
directed divergent synthesis strategy can be extended to the
divergent synthesis of other oligosaccharides and their
analogues.
4.
5.
We thank University of Wisconsin (UW) for funding. Y. Zhao
thanks Jiangsu Overseas Research and Training Program for
financial support of the visiting scholar position at UW-
Madison. We thank Professor George O’Doherty (Northeastern
University) for reading the manuscript and offering insightful
comments. This study made use of the Medicinal Chemistry
Center at UW-Madison instrumentation, funded by the
Wisconsin Alumni Research Foundation (WARF) and the UW
School of Pharmacy
6.
7.
8.
Notes and references
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins