Organic Letters
Letter
25293026), Scientific Research on Innovative Areas “Chemical
Biology of Natural Products” (SI, Grant No. 24102502), The
Ministry of Education, Culture, Sports, Science and Technol-
ogy through Program for Leading Graduate Schools (Hokkaido
University “Ambitious Leader’s Program”), Takeda Science
Foundation, and the Platform Project for Supporting Drug
Discovery and Life Science Research (Platform for Drug
Discovery, Informatics and Structural Life Science).
REFERENCES
■
(1) (a) Shoji, J.; Hinoo, H.; Katayama, T.; Matsumoto, K.; Tanimoto,
T.; Hattori, T.; Higashiyama, I.; MIwa, H.; Motokawa, K.; Yoshida, T.
J. Antibiot. 1992, 45, 817−823. (b) Shoji, J.; Hinoo, H.; Katayama, T.;
Nakagawa, Y.; Ikenishi, Y.; Iwatani, K.; Yoshida, T. J. Antibiot. 1992,
45, 824−831.
Figure 2. Resistance acquisition during serial passaging in the presence
of sub-MIC levels of antimicrobials. The x axis is the number of days,
and the y axis is the number of folds of MIC during passaging.
(2) (a) Konishi, M.; Sugawara, K.; Hanada, M.; Tomita, K.; Tomatsu,
K.; Miyaki, T.; Kawaguchi, H.; Buck, R. E.; More, C.; Rossomano, V.
Z. J. Antibiot. 1984, 37, 949−957. (b) Sugawara, K.; Numata, K.;
Konishi, M.; Kawaguchi, H. J. Antibiot. 1984, 37, 958−964.
(3) (a) Hashizume, H.; Igarashi, M.; Hattori, S.; Hori, M.; Hamada,
M.; Takeuchi, T. J. Antibiot. 2001, 54, 1054−1059. (b) Hashizume, H.;
Hirosawa, S.; Sawa, R.; Muraoka, Y.; Ikeda, D.; Naganawa, H.; Igarashi,
M. J. Antibiot. 2004, 57, 52−58.
plusbacin A3-resistant strains obtained from the resistance
acquisition experiments (three strains) was performed, and
mutations in proteins involved in bacterial cell-wall biosynthesis
were found (Figure S4). In particular, a single mutation in
VraE, which is linked to bacitracin and nisin resistance,15 might
be involved in plusbacin A3 resistance. Nisin is a known binder
to lipid II; thus, these results support the proposed mechanism
of 1.
In conclusion, we have achieved the total synthesis of
plusbacin A3 (1) as well as its dideoxy analogue 28 via a JU-
3CR with a five-membered cyclic imine and convertible
isocyanide 18. In particular, the stereochemical outcome was
adjusted by the electron density of the isocyanide building
block. Evaluation of the antibacterial activity and analysis of the
structure via CD suggested that the hydroxyl groups of the
Asp(β-OH) residues in 1 are required to maintain its
antibacterial activity. Furthermore, it was revealed that
plusbacin A3 induces only low-level resistance. These results
revealed several promising properties of 1, corroborating its
potential as a lead compound for novel antibacterial agent
development and mechanistic studies.
(4) Muller, A.; Munch, D.; Schmidt, Y.; Reder-Christ, K.; Schiffer, G.;
̈
̈
Bendas, G.; Gross, H.; Sahl, H.-G.; Schneider, T.; Brotz-Oesterhelt, H.
̈
J. Biol. Chem. 2012, 287, 20270−20280.
(5) (a) Kim, S. J.; Singh, M.; Wohlrab, A.; Yu, T.-Y.; Patti, G. J.;
O’Connor, R. D.; Vannieuwenhze, M.; Schaefer, J. Biochemistry 2013,
52, 1973−1979. (b) O’Connor, R. D.; Singh, M.; Chang, J.; Kim, S. J.;
VanNieuwenhze, M.; Schaefer, J. J. Phys. Chem. B 2017, 121, 1499−
1505.
(6) Maki, H.; Miura, K.; Yamano, Y. Antimicrob. Agents Chemother.
2001, 45, 1823−1827.
(7) Wohlrab, A.; Lamer, R.; VanNieuwenhze, M. S. J. Am. Chem. Soc.
2007, 129, 4175−4177.
(8) (a) Herdeis, C.; Hubmann, H. P.; Lotter, H. Tetrahedron:
Asymmetry 1994, 5, 119−128. (b) Lee, J. H.; Kang, J. E.; Yang, M. S.;
Kang, K. Y.; Park, H. K. Tetrahedron 2001, 57, 10071−10076.
(c) Hughes, P.; Clardy, J. J. Org. Chem. 1989, 54, 3260−3264.
(d) Kumar, T. P.; Chandrasekhar, S. Synthesis 2012, 44, 2889−2894.
(e) Durand, J.-O.; Larcheveq
39, 5743−5746. (f) Ewing, W. R.; Joullie,
2843−2850.
(9) (a) Nutt, R. F.; Joullie,
̂
ue, M.; Petit, Y. Tetrahedron Lett. 1998,
́
M. M. Heterocycles 1988, 27,
ASSOCIATED CONTENT
* Supporting Information
■
S
́
M. M. J. Am. Chem. Soc. 1982, 104, 5852−
́
5853. (b) Bowers, M. M.; Carroll, P.; Joullie, M. M. J. Chem. Soc.,
The Supporting Information is available free of charge on the
Perkin Trans. 1 1989, 857−865.
(10) Katsuyama, A.; Matsuda, A.; Ichikawa, S. Org. Lett. 2016, 18,
2552−2555.
1
Experimental details; H, 13C NMR and mass spectra
(11) (a) Pirrung, M. C.; Ghorai, S. J. Am. Chem. Soc. 2006, 128,
11772−11773. (b) Rikimaru, K.; Yanagisawa, A.; Kan, T.; Fukuyama,
T. Heterocycles 2007, 73, 403−417. (c) Lindhorst, T.; Bock, H.; Ugi, I.
Tetrahedron 1999, 55, 7411−7420. (d) van der Heijden, G.; Jong, J. A.
W.; Ruijter, E.; Orru, R. V. A. Org. Lett. 2016, 18, 984−987.
(12) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121,
9742−9743.
(13) Srivastava, A. K.; Panda, G. Chem. - Eur. J. 2008, 14, 4675−4688.
(14) Ikawa, T.; Sajiki, H.; Hirota, K. Tetrahedron 2005, 61, 2217−
2231.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(15) (a) Song, Y.; Lunde, C. S.; Benton, B. M.; Wilkinson, B. J.
Antimicrob. Agents Chemother. 2012, 56, 3157−3164. (b) Hiron, A.;
The authors declare no competing financial interest.
Falord, M.; Valle, J.; Deb
2011, 81, 602−622.
́
arbouille,
́
M.; Msadek, T. Mol. Microbiol.
ACKNOWLEDGMENTS
■
We thank Prof. Kan, T. for the helpful suggestion to use the
convertible isocyanate 18. We also thank Ms. S. Oka (Center
for Instrumental Analysis, Hokkaido University) for measure-
ment of the mass spectra. This research was supported by JSPS
Grant-in-Aid for Scientific Research (B) (SI, Grant No.
D
Org. Lett. XXXX, XXX, XXX−XXX