B. Kozik et al. / Tetrahedron Letters 47 (2006) 3435–3438
3437
Acknowledgement
The support of this research by the Jagiellonian Univer-
sity within project No. DS 74 is gratefully acknowledged.
H+
+
CN
NC
CN
HN
References and notes
5e
5e'
´
1. Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire,
M. Chem. Rev. 2002, 102, 1359–1469.
1,2-alkyl
shift
H
2. (a) Yamamoto, T.; Maruyama, T.; Zhou, Z.; Ito, T.;
Fukada, T.; Yoneda, Y.; Begum, F.; Ikeda, T.; Sasaki, S.;
Takezoe, H.; Fukada, A.; Kubota, K. J. Am. Chem. Soc.
1994, 116, 4832–4845; (b) Papillon, J.; Schulz, E.; Gelinas,
S.; Lessard, J.; Lemaire, M. Synth. Met. 1998, 96, 155–
160.
3. (a) Noyori, R. Chem. Soc. Rev. 1989, 18, 187–208; (b)
Narasaka, K. Synthesis 1991, 1–11.
4. (a) Piao, G.; Akagi, K.; Shirakawa, H.; Kyotani, M. Curr.
Appl. Phys. 2001, 1, 121–123; (b) Akagi, K.; Piao, G.;
Kaneko, S.; Higuchi, I.; Shirakawa, H.; Kyotani, M.
Synth. Met. 1999, 102, 1406–1409.
+
+
CN
CN
HN
5e''
NH
5e'''
4'
3'
2'
5'
6'
1'
5
8
4
3
6
7
2
-H+
CN
1
NH2
6e
5. (a) Cammidge, A. N.; Crepy, K. V. L. Tetrahedron 2004,
60, 4377–4386; (b) Hattori, T.; Takeda, A.; Yamabe, O.;
Miyano, S. Tetrahedron 2002, 58, 233–238, and references
cited therein.
Scheme 3.
6. Stanforth, S. P. Tetrahedron 1998, 54, 263–303.
7. (a) Lee, K. Y.; Kim, S. C.; Kim, J. N. Tetrahedron Lett.
2006, 47, 977–980; (b) Nishii, Y.; Yoshida, T.; Asano, H.;
Wakasugi, K.; Morita, J.-i.; Aso, Y.; Yoshida, E.;
Motoyoshiya, J.; Aoyama, H.; Tanabe, Y. J. Org. Chem.
2005, 70, 2667–2678, and references cited therein.
8. For leading review articles and publications on this
subject, see e.g.: (a) Taylor, E. C.; McKillop, A. In The
Advances in Organic Chemistry; Taylor, E. C., Ed.; The
Chemistry of Cyclic Enaminonitriles and o-Aminonitriles;
Interscience: New York, 1970; Vol. 5, pp 79–308; (b)
Bamfield, P.; Gordon, P. F. Chem. Soc. Rev. 1984, 13,
441–488; (c) Campaigne, E.; Schneller, S. W. Synthesis
1976, 705–716; (d) Fatiadi, A. J. Synthesis 1978, 165–204,
and 241–282; (e) Freeman, F. Chem. Rev. 1980, 80, 329–
350; (f) Campaigne, E.; Maulding, D. R.; Roelofs, W. L. J.
Org. Chem. 1964, 29, 1543–1549; (g) Sepiol, J.; Kawalek,
B.; Mirek, J. Synthesis 1977, 701–704; (h) Sepiol, J.;
Mirek, J.; Soulen, R. L. Pol. J. Chem. 1978, 52, 1389–
1394; (i) Sepioł, J. Synthesis 1983, 559–563; (j) Gorecki, T.;
Sepiol, J. J. Synlett 1994, 533–534; (k) Wilamowski, J.;
Osman, D.; Machaj, A.; Kawałek, B.; Sepioł, J. J. J.
Prakt. Chem. 1995, 337, 234–236; (l) Sepiol, J. J.;
Wilamowski, J. Tetrahedron Lett. 2001, 42, 5287–5289;
(m) Sepiol, J. J.; Gora, M.; Luczynski, M. K. Synlett 2001,
attack and cyclization at the methyl substituted benzene
ring in 5b and 5e predominated (Scheme 3). NMR stud-
ies allowed for unambiguous assignment of the struc-
tures of the aminonitriles.19 The position of the methyl
group at C-6 of naphthalene 6e was established through
2D NMR experiments. The mechanism of the quasi-aro-
matic rearrangement is presented in Scheme 3.
The electrophilic ipso attack of the active nitrile function
of 5e leads to the spirobenzenium cation 5e0. The alkyl
shift (5e00) gives 5e000, which after losing the proton tauto-
merizes to 6e. Recently published results of a similar
quasi-aromatic rearrangement seem to involve allylic-
type carbocations in the alkyl-shift stage.8l,m The
rearrangements discussed here appear to be the first
example of cyclization involving the benzylic-type carbo-
cation. The stability of this carbocation may have
contributed to the relatively high yield of 6e.
The synthetic approach presented in this letter involves
the synthesis of a-arylnaphthalenes through a one-stage
construction of the naphthalene system. This approach
might potentially be employed in the synthesis of some
chiral a-arylnaphthalenes equipped with versatile amino
and nitrile functions.
´
1383–1386; (n) Krasodomski, W.; Łuczynski, M. K.;
Wilamowski, J.; Sepioł, J. J. Tetrahedron 2003, 59, 5677–
5683.
9. Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. J. Am.
Chem. Soc. 2004, 126, 5358–5359.
Furthermore, according to our earlier studies, 1-amino-
naphthalene-2-carbonitriles possessing short alkyl
groups at the ‘4’ position are highly active against some
phytopathogenic fungi such as Fusarium culmorum,
Alternaria brassicicola, Botrytis cinerea and others.20
In connection with these studies, we presumed that
the aminonitriles having phenyl or aryl groups at the
‘4’ position might also exhibit fungicidal activity. Preli-
minary tests of aminonitriles 6a–f revealed their diverse
biological activity against some phytopathogenic
fungi. Aminonitrile 6a showed considerable fungistatic
activity.21
10. Zimerman, H. C.; Armesto, D.; Amezua, M.; Gannet, T.
J. Am. Chem. Soc. 1979, 101, 6367–6383.
11. Aldehyde 4a and ketone 4d are commercially available
from Fluka Chemie AG and Aldrich-Chemical Co Ltd,
respectively.
12. (a) Preparation of 3,3-diphenyl-1-propene-1,1-dicarbo-
nitrile (5a): a solution of diphenylacetaldehyde (4a)
(1.14 g, 5.8 mmol), malonodinitrile (0.38 g, 5.8 mmol),
piperidine (40 lL) and anhydrous ethanol (5 mL) were
heated to reflux for 5 min and then slowly cooled in an ice-
bath. The resulting colourless precipitated solid was
washed with a small amount of chilled ethanol. Dinitrile
4a was obtained as small white crystals; 1.11 g (78%); mp