8944
H. Sugimoto et al. / Tetrahedron Letters 46 (2005) 8941–8944
5. Dahmen, S.; Bra¨se, S. J. Am. Chem. Soc. 2002, 124, 5940–
79%, 83% ee). Recrystallization from hexane/CH2Cl2
afforded (S)-2a with 99% ee.
5941.
6. (a) Fang, X.; Johannsen, M.; Yao, S.; Gathergood, N.;
Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1999, 64,
4844–4849; (b) Hayashi, T.; Ishigedani, M. J. Am. Chem.
Soc. 2000, 122, 976–977; (c) Fujihara, H.; Nagai, K.;
Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055–12056;
(d) Soeta, T.; Nagai, K.; Fujihara, H.; Kuriyama, M.;
Tomioka, K. J. Org. Chem. 2003, 68, 9723–9727; (e)
Wang, C. J.; Shi, M. J. Org. Chem. 2003, 68, 6229–6237;
(f) Otomaru, Y.; Tokunaga, N.; Shintani, R.; Hayashi, T.
Org. Lett. 2005, 7, 307–310, and reference cited therein.
7. Tomioka, K.; Inoue, I.; Shindo, M.; Koga, K. Tetrahedron
Lett. 1990, 31, 6681–6684.
8. For the enantioselective allylation reaction of acylhydraz-
ones, see: (a) Hirabayashi, R.; Ogawa, C.; Sugiura, M.;
Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 9493–
9499; (b) Berger, R.; Rabbat, P. M. A.; Leighton, J. L.
J. Am. Chem. Soc. 2003, 125, 9596–9597; For the reaction
of N-(2-hydroxyphenyl)imines, see: (c) Ishitani, H.;
Kobayashi, S. Tetrahedron Lett. 1996, 37, 7357–7360; (d)
Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc.
1997, 119, 7153–7154; (e) Kobayashi, S.; Komiyama, S.;
Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979–981; (f)
Gastner, T.; Ishitani, H.; Akiyama, R.; Kobayashi, S.
Angew. Chem., Int. Ed. 2001, 40, 1896–1898.
14. There are some examples for the enantioselective reaction
of nitrones with Grignard reagents: (a) Ukaji, Y.; Hata-
naka, T.; Ahmed, A.; Inomata, K. Chem. Lett. 1993,
1313–1316; (b) Merchan, F. L.; Merino, P.; Rojo, I.;
Tejero, T.; Dondoni, A. Tetrahedron: Asymmetry 1996, 7,
667–670.
15. Generally, the reactivity of Grignard reagents to imines is
low: Saito, S.; Hatanaka, K.; Yamamoto, H. Synlett 2001,
1859–1861.
16. (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima,
T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392–4398;
(b) Swain, C. G.; Boyles, H. B. J. Am. Chem. Soc. 1951,
73, 870–872.
17. (a) Kovacs, J.; Ghatak, U. R. J. Org. Chem. 1966, 31, 119–
121; (b) Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A.;
Bank, S.; Closson, W. D.; Wriede, P. J. Am. Chem. Soc.
1967, 89, 5311–5312; (c) DÕSouza, L.; Day, R. A. Science
1968, 160, 882–883; Conversion to N-alkyl-N-sulfonyl
compounds or N-Boc-N-sulfonyl compounds prior to the
cleavage is needed for removal of a tosyl group from the
primary amines, see: (d) Nyasse, B.; Grehn, L.; Ragnars-
son, U. Chem. Commun. 1997, 1017–1018, and references
cited therein; (e) Juhl, K.; Gathergood, N.; Jørgensen, K.
A. Angew. Chem., Int. Ed. 2001, 40, 2995–2997.
9. We have reported highly enantioselective radical addition
to vinylsulfones, in which a chiral Lewis acid selectively
coordinates one of the enantiotopic sulfonyl oxygens and
nitrogen in the heteroarylsulfonyl group: (a) Sugimoto,
H.; Nakamura, S.; Watanabe, Y.; Toru, T. Tetrahedron:
Asymmetry 2003, 14, 3045–3055; (b) Sugimoto, H.;
Kobayashi, K.; Nakamura, S.; Toru, T. Tetrahedron Lett.
2004, 45, 4213–4216; (c) Watanabe, Y.; Mase, N.; Furue,
R.; Toru, T. Tetrahedron Lett. 2001, 42, 2981–2984.
10. The 2-pyridylsulfonyl group has been used for the
synthesis of sulfonamides: (a) Han, H.; Bae, I.; Yoo, E.
J.; Lee, J.; Do, Y.; Chang, S. Org. Lett. 2004, 6, 4109–
4112; (b) Arrayaˆs, R. G.; Cabrera, S.; Carretero, J. C. Org.
Lett. 2005, 7, 219–221.
11. Recently, chiral 2-pyridinesulfonamide derivatives have
been reported to have an inhibitory activity to the
osteoclast-specific cysteine protease cathepsin K: (a) Mar-
quis, R. W.; Ru, Y.; LoCastro, S. M.; Zeng, J.; Yamash-
ita, D. S.; Oh, H.-J.; Erhard, K. F.; Davis, L. D.;
Tomaszek, T. A.; Tew, D.; Salyers, K.; Proksch, J.; Ward,
K.; Smith, B.; Levy, M.; Cummings, M. D.; Haltiwanger,
R. C.; Trescher, G.; Wang, B.; Hemling, M. E.; Quinn, C.
J.; Cheng, H.-Y.; Lin, F.; Smith, W. W.; Janson, C. A.;
Zhao, B.; McQueney, M. S.; DÕAlessio, K.; Lee, C.-P.;
Marzulli, A.; Dodds, R. A.; Blake, S.; Hwang, S.-M.;
James, I. E.; Gress, C. J.; Bradley, B. R.; Lark, M. W.;
Gowen, M.; Veber, D. F. J. Med. Chem. 2001, 44, 1380–
1395; (b) Trout, R. E. L.; Marquis, R. W. Tetrahedron
Lett. 2005, 46, 2799–2801.
12. The reaction of 1a with a catalytic amount (0.3 equiv) of
bis(oxazoline) 3 and MeMgBr gave 2a with 29% ee.
13. Typical procedure for enantioselective addition of Grig-
nard reagents to 1a: Preparation of N-(1-phenylethyl)-2-
pyridinesulfonamide (S)-2a. To a solution of bis(oxazo-
line)-Ph (244 mg, 0.731 mmol) and imine 1a (120 mg,
0.487 mmol) in toluene (10 mL) was added MeMgBr
(1.04 mol LÀ1 in Et2O, 0.937 mL, 0.974 mmol) at À95 °C
and the reaction mixture was stirred for 1 h. The reaction
was quenched with 1 N HCl and extracted with Et2O. The
combined extracts were dried over Na2SO4 and concen-
trated under reduced pressure to leave a residue, which
was purified by column chromatography (SiO2 20 g,
benzene/ethyl acetate = 90/10) to afford (S)-2a (101 mg,
18. (a) Goulaouic-Dubois, C.; Guggisberg, A.; Hesse, M. J.
Org. Chem. 1995, 60, 5969–5972; (b) Pak, C. S.; Lim, D. S.
Synth. Commun. 2001, 31, 2209–2214.
19. Preparation of (S)-1-phenylethylamine hydrochloride (S)-
8: A mixture of (S)-2a (20.2 mg, 0.077 mmol) and Mg
powder (9.3 mg, 0.385mmol) in MeOH (2 mL) and THF
(0.5mL) was stirred for 2 h at 0 °C. Then, diethyl ether
(3 mL) and saturated aq NH4Cl (3 mL) were added and
the reaction mixture was stirred for 2 h at room temper-
ature. The aqueous layer was extracted with Et2O. The
combined organic extracts were dried over Na2SO4 and
concentrated under reduced pressure to leave the oil,
which was purified by column chromatography (CH2Cl2/
MeOH/aq NH3 = 90/10/0.5) to afford the amine. The
amine was dissolved in THF (2 mL) and to the resultant
solution was added a 2 N HCl solution. After stirring for
30 min at room temperature, the solution was concen-
trated under reduced pressure to give (S)-8 (10.9 mg, 90%).
In order to determine the enantiopurity, (S)-8 was
transformed to N-benzoyl-1-phenylethylamine on treat-
ment with benzoyl chloride and triethylamine in CH2Cl2
at room temperature. This amide was found to be 99% ee
by HPLC analysis using CHIRALCEL OD-H.
20. Tetrahedral Mg(II) complex has been proposed: (a) Corey,
E. J.; Ishihara, K. Tetrahedron Lett. 1992, 33, 6807–6810;
(b) Sibi, M. P.; Sausker, J. B. J. Am. Chem. Soc. 2002, 124,
984–991; The octahedral structure has been also proposed:
(c) Sibi, M. P.; Petrovic, G.; Zimmerman, J. J. Am. Chem.
Soc. 2005, 127, 2390–2391; (d) Gothelf, K. V.; Hazell, R.
G.; Jørgensen, K. A. J. Org. Chem. 1998, 63, 5483–5488.
21. Yao, S.; Saddy, S.; Hazell, R. G.; Jørgensn, K. A. Chem.
Eur. J. 2000, 6, 2435–2448.
22. Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209–220.
23. For chiral relay in enantioselective reactions, see: Cor-
minboeuf, O.; Quaranta, L.; Renaud, P.; Liu, M.;
Jasperse, C. P.; Sibi, M. P. Chem. Eur. J. 2003, 9, 28–
35.
24. Just before the submission of this manuscript, Carretero
and co-workers have reported the enantioselective conju-
gate addition of Me2Zn to N-(2-pyridyl)sulfonyl-a,b-
unsaturated ketimines derived from chalcone, see: Esquiv-
´
ias, J.; Arrayas, R. G.; Carretero, J. C. J. Org. Chem.
2005, 70, 7451–7454.