Sureshbabu et al.
helical structure in solution for a heptapeptidyl urea bearing
amino acids Tyr, Ala, and Val.9 A high degree of self-
complementarity that allows a self-assembly process resulting
in C4-symmetry (all S) structure by a cyclictetraalanylurea [-â-
HAlau-â-HAlau-â-HAlau-â-HAlau-] which possesses nano-
tubular structure was also demonstrated by X-ray analyis.10
Some of the illustrative examples befitting the incorporation of
urea moiety into native peptides to obtain peptidyl ureas as
potential inhibitors are TAR-binding portion of the Tat protein,11
γ-secretase,12 aspartic acid protease,13 HIV-1 proteases,14,15
microbial alkaline proteinase inhibitors (MAPI),16 and aspartic
FIGURE 1. Peptide ester isocyanate and NR-Fmoc-peptide isocyanate.
peptidases.17 As anticipated by Nowick, et al.,4 peptide isocy-
anates, being reactive with nucleophiles, are attractive building
blocks for the development of new biomolecules through
combinatorial chemistry and drug discovery efforts.
Peptide ester isocyanates (OCN-CHR1-CONH-CHR2-
COOMe, Figure 1), prepared by the treatment of peptide ester
hydrochloride salts with phosgene in toluene, in the presence
of saturated aqueous NaHCO3 under modified Schotten-
Baumann conditions or with triphosgene [bis(trichloromethyl)-
carbamate] in the presence of diisopropylethylamine (DIEA),
were coupled with amino acid esters to obtain peptidyl ureas
possessing one urea bond (MeO2C-CHR3-NHCONH-CHR2-
CONH-CHR1-CO2Me).18 Peptide ester isocyanate generation
is usually followed by trapping with an amino component.
Unlike amino acid ester isocyanates, peptide ester isocyanates
cannot be purified by Kugelrohr distillation. Instead, crude
isocyanates are trapped, and the final products are purified.
Similarly, several reagents such as N,N1-carbonyldiimidazole
(CDI),19 1,11-carbonylbisbenzotriazole,20 and p-nitrophenyl car-
bamate,21 have also been used for the synthesis of peptidyl ureas.
The coupling of isocyanates derived from peptide ester with
amino acid ester or peptide ester results in peptidyl ureas
comprising carboxyl group at both the terminal ends.
Alternatively, organic synthesis also permits insertion of an
amino group in place of R-carboxyl group that can then be
converted to its isocyanate. This functional group transformation
was accomplished by converting NR-Boc-R-amino acid amide
to nitrile followed by its reduction to amine.22a Alternatively,
NR-Fmoc-amino acid was converted to its â-amino alcohol
which was transformed into an amine via azide.22b A similar
protocol was employed by Burgess et al.23 Consequently, the
backbone in each repeating unit of oligourea peptidomimetic
is generally extended by one carbon atom. Further, the mono-
protected diamines were either converted to the corresponding
isocyanates (using phosgene) or were treated with chlorofor-
(3) Other classes include peptoids, oligocarbamates, hydrazinopeptides,
etc. (a) Fletcher, M. D.; Campbell, M. M. Chem. ReV. 1998, 98, 763. (b)
Simon, R.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.; Jewell, D.
A.; Banville, S.; Ng, S.; Wang, L.; Resenberg, S.; Marlowe, C. K.;
Spellmeyer, D. C.; Tans, R.; Frankelo, A. D.; Santi, D. V.; Cohen, F. E.;
Bartlett, P. A. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9367. (c) Zuckermann,
R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am. Chem. Soc. 1992,
114, 10646. (d) Wender, P. A.; Rothbard, J. B.; Jessop, T. C.; Kreider, E.
L.; Wylie, B. L. J. Am. Chem. Soc. 2002, 124, 13382. (e) Liskamp, R. M.
J. Angew. Chem. Int. Ed. 2003, 33, 633. (f) Moran, E. J.; Wilson, T. E.;
Cho, C. Y.; Cherry, S. R.; Schultz, P. G. Biopolymers 2004, 37, 213. (g)
Guy, L.; Vidal, J.; Collet, A.; Amour, A.; Reboud-Ravaux, M. J. Med. Chem.
1998, 41, 4833. (h) Bonnet, D.; Samson, F.; Rommens, C.; Gras-Masse,
H.; Melnyk, O. J. Pept. Res. 1999, 54, 270.
(4) (a) Nowick, J. S.; Smith, E. M.; Pairish, M. Chem. Soc. ReV. 1996,
25, 401. (b) Nowick, J. S. Acc. Chem. Res. 1999, 32, 287.
(5) (a) Nowick, J. S.; Mahrus, S.; Smith, E. M.; Ziller, J. W. J. Am.
Chem. Soc. 1996, 118, 1066. (b) Nowick, J. S.; Powell, N. A.; Martinez,
E. J.; Smith, E. M.; Noronha, G. J. Org. Chem. 1992, 57, 3.
(6) (a) Fisk, J. D.; Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc.
2000, 122, 5443. (b) Nowick, J. S.; Abdi, M.; Bellamo, K. A.; Love, J. A.;
Martinez, E. J.; Noronha, G.; Smith, E. M.; Ziller, J. W. J. Am. Chem. Soc.
1995, 117, 89.
(7) (a) Nowick, J. S.; Smith, E. M.; Noronha, G. J. Org. Chem. 1995,
60, 7386. (b) Nowick, J. S.; Holmes, D. L.; Mackin, G.; Noronha, G.; Shaka,
A. J.; Smith, E. M. J. Am. Chem. Soc. 1996, 118, 2764.
(8) Holmes, D. L.; Smith, E. M.; Nowick, J. S. J. Am. Chem. Soc. 1997,
119, 7665 and references therein.
(9) Semetey, V.; Rognan, D.; Hemmerlin, C.; Graff, R.; Briand, J.-P.;
Marraud, M.; Guichard, G. Angew. Chem., Int. Ed. 2002, 41, 1893.
(10) Semetey, V.; Didierjean, C.; Briand, J.-P.; Aubry, A.; Guichard, G.
Angew. Chem., Int. Ed. 2002, 41, 1895.
(11) (a) Cho, C. Y.; Moran, E. J.; Cherry, S. R.; Stephans, J. C.; Fodor,
S. P.; Adams, C. L.; Sundaram, A.; Jacobs, J. W.; Schultz, P. G. Science
1993, 261, 1303. (b) Wang, X.; Huq, I.; Rana, T. M. J. Am. Chem. Soc.
1997, 119, 6444. (c) Tamilarasu, N.; Huq, I.; Rana, T. M. Bioorg. Med.
Chem. Lett. 2001, 11, 505. (d) Tamilarasu, N.; Huq, I.; Rana, T. M. J. Am.
Chem. Soc. 1999, 121, 1597. (e) Jones, K. A.; Peterlin, B. M. Annu. ReV.
Biochem. 1994, 63, 717. (f) Patch, J. A.; Barron, A. E. Curr. Opin. Chem.
Biol. 2002, 6, 872.
(12) (a) Esler, W. P.; Kimberly, W. T.; Ostaszewski, B. L.; Ye, W.; Diehl,
T. S.; Selkoe, D. J.; Wolfe, M. S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
2720. (b) Bakshi, P.; Wolfe, M. S. J. Med. Chem. 2004, 47, 6485. (b) Esler,
W. P.; Das, C.; Wolfe, M. S. Bioorg. Med. Chem. Lett. 2004, 14, 1935. (c)
Getman, D. P.; de Crescenzo, G. A.; Heintz, R. M.; Reed, K. L.; Talley, J.
J.; Bryant, M. L.; Clare, M.; Houseman, K. A.; Marr, J. J.; Mueller, R. A.
J. Med. Chem. 1993, 36, 288.
(13) Kick, K. E.; Ellman, J. A. J. Med. Chem. 1995, 38, 1427.
(14) Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.;
Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.;
Chang, C.-H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-
Viitanen, S. Science 1994, 263, 380.
(15) (a) Navia, M. A.; Fitzgerald, M. D. P.; Mckeever, B. M.; Leu, C.-
T.; Heimbach, J. C.; Herber, W. K.; Sigal, I. S.; Darke, P. L.; Spronger, J.
P. Nature (London) 1989, 615, 337. (b) Wlodawer, A.; Miller, M.; Jaskolski,
M.; Sathyanarayana, B. K.; Baldwin, E.; Weber, I. T.; Selk, L. M.; Clawson,
L.; Schneider, J.; Kent, S. B. H. Science 1989, 245, 616. (c) Brik, A.; Wong,
C.-H. Org. Biomol. Chem. 2003, 1, 5. (d) Stefanelli, S.; Cavaletti, L.;
Sarubbi, E.; Ragg, E.; Colombo, L.; Selva, E. J. Antibiot. 1995, 48, 332.
(16) (a) Broadbridge, R. J.; Sharma, R. P.; Akhtar, M. Chem. Commun.
1998, 1449. (b) Kaneto, R.; Chiba, H.; Dobashi, K.; Kojima, I.; Sasaki, K.;
Shibamoto, N.; Nishida, H.; Okamoto, R.; Akagawa, H.; Mizuno, S. J. J.
Antibiot. 1993, 46, 1622. (c) Zhang, X.; Rodrigues, J.; Evans, L.; Hinkle,
B.; Ballantyne, L.; Pena, M. J. Org. Chem. 1997, 62, 6420. (d) Broadbridge,
R. J.; Sharma, R. P.; Akhtar, M. Chem. Commun. 1998, 1449.
(17) Dales, N. A.; Bohacek, R. S.; Satyshur, K. A.; Rich, D. H. Org.
Lett. 2001, 3, 2313.
(18) For the synthesis of peptide ester isocyanates see: Nowick, J. S.;
Holmes, D. L.; Noronha, G.; Smith, E. M.; Nguyen, T. M.; Huang, S.-L. J.
Org. Chem. 1996, 61, 3929. For the synthesis of amino acid ester isocyanates
see: (a) Goldschmidt, S.; Wick, M. Liebigs Ann. Chem. 1952, 575, 217.
(b) Losse, G.; Godicke, W. Chem. Ber. 1967, 100, 3314. (c) Nowick, J. S.;
Powell, N. A.; Nguyen, T. M.; Noronha, G. J. Org. Chem. 1992, 57, 7364.
(19) (a) Zhang, X.; Rodrigues, J.; Evans, L.; Hinkle, B.; Ballantyne, L.;
Pena, M. J. Org. Chem. 1997, 62, 6420. (b) Nefzi, A.; Ostresh, J. M.; Meyer,
J.-P.; Houghten, R. A. Tetrahedron Lett. 1997, 38, 931.
(20) Katritzky, A. R.; Pleynet, D. P. M.; Yang, B. J. Org. Chem. 1997,
62, 4155.
(21) (a) Kruijtzer, J. A. W.; Lefeber, D. J.; Liskamp, R. M. J. Tetrahedron
Lett. 1997, 38, 5335. (b) Boeijen, A.; Liskamp, R. M. J. Eur. J. Org. Chem.
1999, 2127; (c) Boeijen, A.; van Ameijde, J.; Liskamp, R. M. J. J. Org.
Chem. 2001, 66, 8454.
(22) (a) Boeijen, A.; Liskamp, R. M. J. Eur. J. Org. Chem. 1999, 2127,
7. (b) Boeijen, A.; van Ameijde, J.; Liskamp, R. M. J. J. Org. Chem. 2001,
66, 8454.
(23) (a) Burgess, K.; Linthicum, D. S.; Shin, H. Angew. Chem., Int. Ed.
Engl. 1995, 34, 907. (b) Burgess, K.; Ibarzo, J.; Linthicum, D. S.; Russell,
D. H.; Shin, H.; Shintangkoon, A.; Totani, R.; Zhang, A. J. J. Am. Chem.
Soc. 1997, 119, 1556.
7698 J. Org. Chem., Vol. 71, No. 20, 2006