A. Amma, T. E. Mallouk / Tetrahedron Letters 45 (2004) 1151–1153
1153
Figure 2. Left: Structure of a second generation (G2) molecular wedge. Right: Energy-minimized (PC Macromodel) space filling model of the
building block.
9. Ariga, K.; Terasaka, Y.; Sakai, D.; Tsuji, H.; Kikuchi,
J.-.I. J. Am. Chem. Soc. 2000, 122, 7835.
10. (a) Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem.
Soc. 2001, 123, 9634; (b) Weingarten, M. D.; Sekanina, K.;
Still, W. C. J. Am. Chem. Soc. 1998, 120, 9112.
11. Sugiura, K.; Tanaka, H.; Matsumoto, T.; Kawai, T.;
Sakata, Y. Chem. Lett. 1999, 1193.
12. Dimick, S. M.; Powell, S. C.; McMahon, S. A.; Moothoo,
D. N.; Naismith, J. H.; Toone, E. J. J. Am. Chem. Soc.
1999, 121, 10286.
The significance of synthesizing cyclophane 11 from 8 is
that the synthesis may in principle be extended, by
sequential coupling of suitably protected A3B3 units like
8, to make higher generation number wedges. To do
this, we are currently trying to improve the yield in the
ring closing step by synthesizing the molecule on solid
phase with stochiometric amounts of reactants at high
dilution. Our future plans are to extend the synthesis to
higher generation number isosceles triangular wedges as
illustrated in Figure 2.
13. 1H NMR (acetone-d6) d 8.80 (m, 3H, aromatic), 3.98 (s,
3H, methoxy), 1.65 (s, 9H, tert-butyl); 13C NMR (acetone-
d6) d [166.17, 165.92, 164.52] (ester carbons), [134.92,
134.68, 134.57, 134.08, 132.60, 132.17] (benzene carbons),
82.84 (tert-butyl carbon), 53.03 (methoxy carbon), 28.30
(methyl carbons); (APCI)ꢀ MS ([M)H]ꢀ ¼ 279.
Acknowledgements
We thank Prof. Raymond L. Funk for helpful discus-
sions, and the National Science Foundation for support
under grant CHE-0095394.
14. 1H NMR (THF-d8) d 9.56 (s, 1H, amide), 8.75 (s, 1H,
amide), 8.66 (m, 3H, aromatic), 7.30 (m, 1H, aromatic),
6.86 (m, 2H, aromatic), 4.52 (s, 2H, amine), 3.92 (s, 3H,
methoxy), 2.24 (t, J ¼ 7.5 Hz, 2H, methylene), 1.62 (s + m
overlaid, 9 + 2H, tert-butyl, methylene), 1.30 (s, 28H,
methylene), 0.88 (t, J ¼ 6.8 Hz, 3H, methyl); 13C NMR
(THF-d8) d [170.62, 165.48, 164.14, 163.90] (amide and
ester carbons), [149.48, 140.94, 140.32] (phenyl carbons
from 1,3,5-benzene-tricarboxylic acid), [137.62, 133.00,
132.77, 132.27, 131.07] (phenyl carbons from 1,3,5-triami-
nobenzene), [101.31, 100.02] (phenyl carbons from 1,3,5-
triamino-benzene), 81.73 (tert-butyl carbon), 52.00 (meth-
oxy carbon), [37.30, 32.30, 30.09, 30.03, 30.01, 29.78,
29.74, 27.69, 22.99] (methylene carbons), 13.87 (methyl
carbon); 2D HMQC NMR verifies structure; (APCI)þ MS
[M+H]þ ¼ 652.
References and notes
1. Alberts, B. Cell 1998, 92, 291–294.
2. Bowden, N.; Terfort, A.; Carbeck, J.; Whitesides, G. M.
Science 1997, 276, 233–235.
3. Bowden, N.; Choi, I. S.; Grzybowski, B. A.; Whitesides,
G. M. J. Am. Chem. Soc. 1999, 121, 5373–5391.
4. Wu, H. K.; Bowden, N.; Whitesides, G. M. Appl. Phys.
Lett. 1999, 75, 3222–3224.
5. Terfort, A.; Bowden, N.; Whitesides, G. M. Nature 1997,
386, 162–164.
6. Huck, W. T. S.; Tien, J.; Whitesides, G. M. J. Am. Chem.
Soc. 1998, 120, 8267–8268.
7. Breen, T. L.; Tien, J.; Oliver, S. R. J.; Hadzic, T.;
Whitesides, G. M. Science 1999, 284, 948–951.
8. (a) Baas, T.; Gamble, L.; Hauch, K. D.; Castner, D. G.;
Sasaki, T. Langmuir 2002, 18, 4898; (b) Erickson, S. D.;
Simon, J.; Still, W. C. J. Org. Chem. 1993, 58, 1305.
15. 1H NMR (THF-d8) d 10.14 (m, 5H, amide), 9.81 (s, 1H,
amide), 9.30 (s, 4H, amide), 8.80 (m, 9H, aromatic), 8.47
(s, 3H, aromatic), 8.18 (s, 6H, aromatic), 7.85 (m, 2H,
aromatic), 7.34 (m, 2H, aromatic), 7.08 (m, 1H, aromatic),
2.35 (t, J ¼ 7.3 Hz, 6H, methylene), 1.66 (s + m overlaid,
18 + 6H, tert-butyl, methylene), 1.29 (s, 84H, methylene),
0.88 (m, 6H, methyl); (MALDI) MS calcd for
C
113H156N10O14 [M+Naþ] 1901.51, found 1901.49.