Chemistry Letters Vol.33, No.2 (2004)
137
plication of this synthetic strategy to many other cacalol families
are in progress.
M. Doe thanks Osaka City University for the OCU Grant for
Graduate Course Students.
References and Notes
1
Synonyms for Cacalia decomposita A. Gray include Psacalium
decompositum and Odontorichum decompositum (Gray) Rydb.
E. Linares and R. A. Bye, J. Ethnopharmacol., 19, 153 (1987).
J. Romo and P. Joseph-Nathan, Tetrahedron, 20, 2331 (1964).
J. Correa and J. Romo, Tetrahedron, 22, 685 (1966).
P. M. Brown and R. H. Thomson, J. Chem. Soc. C, 1969, 1184; H.
Kakisawa and Y. Inouye, Tetrahedron Lett., 1969, 1929; R. M. Ruiz,
J. Correa, and L. A. Maldonado, Bull. Soc. Chim. Fr., 1969, 3612.
a) F. Yuste and F. Walls, Aust. J. Chem., 29, 2333 (1976). b) Y.
Inouye, Y. Uchida, and H. Kakisawa, Bull. Chem. Soc. Jpn., 50,
961 (1977). c) J. W. Huffman and R. Pandian, J. Org. Chem., 44,
1851 (1979). d) A. W. Garofalo, J. Litvak, L. Wang, L. G. Dubenko,
R. Cooper, and D. E. Bierer, J. Org. Chem., 64, 3369 (1999).
M. Terabe, M. Tada, and T. Takahashi, Bull. Chem. Soc. Jpn., 51,
661 (1978).
2
3
4
5
6
Scheme 2. Reaction conditions: a) 10, AlCl3, (CHCl2)2, 70 ꢃC;
b) AcCl, MeOH, rt, 14 h; c) Me2SO4, K2CO3, acetone, reflux,
46 h, 54% (3 steps); d) NaOH, MeOH, 40 ꢃC, 24 h, 97%; e)
(CF3CO)2O, CF3CO2H, 40 ꢃC, 3 h, 64%; f) BBr3, CH2Cl2,
ꢂ78 to ꢂ40 ꢃC, 18 h, 98%; g) chloroacetone, Li2CO3, 70 ꢃC,
17 h, 86%; h) Me2SO4, K2CO3, acetone, reflux, 14 h, 77%; i)
NaBH4, CF3CO2H, 0 ꢃC to rt, 4 h; j) NaBH4, MeOH, rt, 14 h,
96%; k) Jones oxidation, 92%; l) CF3SO3H, CH2Cl2, 0 ꢃC,
30 min, 57%; m) DDQ, CH2Cl2, 0 ꢃC, 5 h, 41%; n) LiAlH4,
THF, 0 ꢃC, 4 h, 100%.
7
8
9
W. D. Inman, J. Luo, S. D. Jolad, S. R. King, and R. Cooper, J. Nat.
Prod., 62, 1088 (1999) and references cited therein.
´
M. L. Gardun˜o-Ramırez, A. Trejo, V. Navarro, R. Bye, E. Linares,
and G. Delgado, J. Nat. Prod., 64, 432 (2001).
´
10 F. Bohlmann, S. Dupre, and B. Nordenstam, Phytochemistry, 29,
3163 (1990).
11 a) F. Bohlmann, K.-H. Knoll, C. Zdero, P. K. Mahanta, M. Grenz, A.
Suwita, D. Ehlers, N. L. Van, W.-R. Abraham, and A. A. Natu, Phy-
tochemistry, 16, 965 (1977). b) F. Bohlmann and C. Zdero, Phyto-
chemistry, 17, 1161 (1978).
12 P. Torres, R. Chinchilla, M. C. Asensi, and M. Grande, Phytochem-
istry, 28, 3093 (1989).
13 S. P. Chavan, V. D. Dhondge, S. S. Patil, Y. T. S. Rao, and C. A.
Govande, Tetrahedron: Asymmetry, 8, 2517 (1997).
14 E. A. Braude, A. G. Brook, and R. P. Linstead, J. Chem. Soc., 1954,
3569.
15 5: ꢁH (300 MHz, CDCl3) 8.21 (1H, d, J ¼ 8:4 Hz), 7.72 (1H, s), 7.47
(1H, q, J ¼ 1:3 Hz), 7.33 (1H, dd, J ¼ 8:4, 6.8 Hz), 7.27 (1H, d,
J ¼ 6:6 Hz), 4.35 (3H, s), 2.75 (3H, s), 2.33 (3H, d, J ¼ 1:3 Hz);
ꢁC (75 MHz, CDCl3) 143.1, 142.3, 138.5, 133.8, 131.8, 130.4,
125.0, 124.5, 123.8, 120.3, 115.7, 107.1, 60.8, 20.3, 8.0. (ꢁ)-2: ꢁH
(400 MHz, CDCl3) 10.68 (1H, s), 7.42 (1H, q, J ¼ 1:0 Hz), 4.28
(3H, s), 4.03 (1H, qt, J ¼ 7:0, 3.5 Hz), 2.97 (1H, ddd, J ¼ 18:0,
5.9, 2.0 Hz), 2.59 (1H, ddd, J ¼ 18:1, 11.0, 7.2 Hz), 2.37 (3H, d,
J ¼ 1:2 Hz), 1.95–1.71 (4H, m), 1.27 (3H, d, J ¼ 7:1 Hz); ꢁC
(100 MHz, CDCl3) 190.4, 146.6, 144.4, 143.8, 143.2, 131.4, 123.5,
121.8, 116.0, 60.1, 29.3, 28.7, 23.7, 23.5, 16.5, 12.8. (ꢁ)-3: ꢁH
(300 MHz, CDCl3) 10.70 (1H, s), 7.47 (1H, q, J ¼ 1:1 Hz), 6.90
(1H, dd, J ¼ 9:9, 3.1 Hz), 6.00 (1H, dddd, J ¼ 9:7, 6.5, 2.4,
0.6 Hz), 4.27 (3H, s), 4.09 (1H, quintet, J ¼ 6:8 Hz), 2.51 (1H, ddt,
J ¼ 17:3, 6.7, 2.9 Hz), 2.38 (3H, d, J ¼ 1:3 Hz), 2.22 (1H, ddd,
J ¼ 17:3, 6.5, 1.5 Hz), 1.17 (3H, d, J ¼ 7:1 Hz); ꢁC (75 MHz,
CDCl3) 190.4, 145.1, 144.21, 144.18, 141.7, 131.4, 126.1, 121.7,
120.5, 120.1, 116.3, 60.6, 29.9, 27.3, 20.3, 12.7. 6: ꢁH (400 MHz,
CDCl3) 11.08 (1H, s), 8.28 (1H, t, J ¼ 4:9 Hz), 7.56 (1H, q,
J ¼ 1:2 Hz), 7.40 (2H, d, J ¼ 5:9 Hz), 4.43 (3H, s), 2.69 (3H, s),
2.33 (3H, d, J ¼ 1:2 Hz). (ꢁ)-4: ꢁH (400 MHz, CDCl3) 7.36 (1H,
q, J ¼ 1:2 Hz), 6.93 (1H, dd, J ¼ 9:8, 3.2 Hz), 5.94 (1H, dddd,
J ¼ 9:8, 6.4, 2.4, 0.9 Hz), 4.92 (2H, s), 4.11 (3H, s), 3.43 (1H, quin-
tet, J ¼ 6:9 Hz), 2.55 (1H, ddt, J ¼ 17:1, 6.3, 2.9 Hz), 2.42 (3H, d,
J ¼ 1:2 Hz), 2.24 (1H, ddd, J ¼ 17:1, 6.3, 1.2 Hz), 1.46 (1H, br s),
1.14 (3H, d, J ¼ 7:1 Hz); ꢁC (100 MHz, CDCl3) 145.8, 142.3,
140.5, 136.0, 128.7, 124.9, 123.7, 121.2, 121.0, 116.2, 60.8, 57.3,
30.6, 27.7, 21.2, 10.2.
Scheme 3. Reaction conditions: a) MOMCl, i-Pr2NEt, CH2Cl2,
97%; b) n-BuLi, THF, ꢂ78 ꢃC, then DMF, 1 h, 90%; c) 3 N HCl,
THF, 40 ꢃC, 100%; d) Swern oxidation, 84%; e) CF3SO3H,
CH2Cl2, 0 ꢃC to rt, 5 h, 99%; f) DDQ, benzene, 0 ꢃC to rt, 3 h;
g) Burgess reagent, benzene, rt, 37%; h) o-chloranil, CH2Cl2,
rt, 20 h, 54%; i) LiAlH4, THF, 0 ꢃC, 5 min, 69%.
tone 23, which was cyclized with CF3SO3H to give (ꢁ)-14-ox-
ocacalol methyl ether (2) in 99% yield. The spectral characteris-
tics of synthetic (ꢁ)-2 were also consistent with those reported
for the natural product.10 After many experimentations, oxida-
tion of 2 employing 1.85 equiv. of DDQ afforded regioselective-
ly 1,2-dehydrogenated (ꢁ)-14-oxo-1,2-dehydrocacalol methyl
ether (3)11a and maturinin (6),4 respectively, along with 1-hy-
droxylated compound 24, which could be transformed into 3
by dehydration with Burgess reagent.17 6 was also able to be de-
rived from (ꢁ)-3 by dehydrogenation with o-chloranil. LiAlH4
reduction of 3 gave (ꢁ)-14-hydroxy-1,2-dehydrocacalol methyl
ether (4)11a as well.
In conclusion, we have accomplished the first total synthesis
of five cacalol families (ꢁ)-2–4, 5, and 6, which might be ex-
pected to exhibit such antihyperglycemic and antimicrobial ac-
tivities as those of cacalol (1). Bioassay for synthetic 2–6 and ap-
16 A. J. Mancuso, S.-L. Huang, and D. Swern, J. Org. Chem., 43, 2480
(1978).
17 E. M. Burgess, H. R. Penton, and E. A. Taylor, Jr., J. Org. Chem., 38,
26 (1973).
Published on the web (Advance View) January 9, 2004; DOI 10.1246/cl.2004.136