Angewandte
Chemie
[8] a) R. Hirschmann, K. C. Nicolaou, S. Pietramico, J. Salvino,
Cleavage from the solid support and simultaneous depro-
tection of the acid-labile products gave the amino acid–
carbohydrate conjugates 16a and 16b. The analysis of the
remarkably clean cleavage products (78–95%; 16b contains
some TBS-protected compound) from 11, 12, 13, and 15 was
performed by HPLC using LD-detection combined with ESI
mass spectrometry.
E. M. Lealy, W. C. Shakespeare, P. S. Spengler, P. Hamley, A. B.
Smith, T. Reisine, K. Raynor, C. Donaldson, W. Vale, L.
Maechler, R. M. Freidinger, C. D. Strader, J. Am. Chem. Soc.
1993, 115, 12550; b) E. Graf von Roedern, E. Lohof, G. Hessler,
M. Hoffmann, H. Kessler, J. Am. Chem. Soc. 1996, 118, 10156;
c) T. Q. Dinh, C. D. Smith, X. Du, R. W. Armstrong, J. Med.
Chem. 1998, 41, 981.
[9] C.-H. Wong, M. Hendrix, D. D. Manning, C. Rosenbohm, W. A.
Greenberg, J. Am. Chem. Soc. 1998, 120, 8319.
[10] M. J. Sofia, R. Hunter, T. Y. Chan, A. Vaughan, R. Dulina, H.
Wang, D. Gange, J. Org. Chem. 1998, 63, 2802.
[11] a) T. Wunberg, C. Kallus, T. Opatz, S. Henke, W. Schmidt, H.
Kunz, Angew. Chem. 1998, 110, 2 62 0A; ngew. Chem. Int. Ed.
1998, 37, 2503; b) T. Opatz, C. Kallus, T. Wunberg, W. Schmidt, S.
Henke, H. Kunz, Carbohydr. Res. 2002, 337, 2089.
[12] C. Kallus, T. Opatz, T. Wunberg, W. Schmidt, S. Henke, H. Kunz,
Tetrahedron Lett. 1999, 40, 7783.
The described results show that 2,6-diaminoglucose 6 can
be selectively deprotected and functionalized in every posi-
tion of the polyfunctional chiral scaffold. The potential of this
methodology lies in the ability to generate high diversity
especially if the diversifications would be performed not only
with Fmoc-protected amino acids, as demonstrated herein,
but with an array of different compounds. This applies
especially to compounds bearing a function corresponding
to that of the replaced protective group. This would be the
case for coupling a TBS or 2-trimethylsilylethoxycarbonyl-
protected compound to the 3 position or a p-methoxybenzyl
or p-methoxybenzyloxycarbonyl(MOZ)-protected com-
pound to the 4 position. In this way, the initial orthogonal
set of protective groups would be reproduced to form another
building block of the type of 6 and thus offer enormous
potential for the construction of ligand and receptor struc-
tures.
[13] T. Opatz, C. Kallus, T. Wunberg, W. Schmidt, S. Henke, H. Kunz,
Eur. J. Org. Chem. 2003, 1527.
[14] E. Bayer, W. Rapp, Chem. Pept. Proteins 1986, 3, 3.
[15] H. Rink, Tetrahedron Lett. 1987, 28, 3787.
[16] To prevent hydrolysis of the methyl ester, reported conditions
(R. Johansson, B. Samuelsson, J. Chem. Soc. Chem. Commun.
1984, 201) had to be changed, we used NaCNBH3/Me3SiCl in the
ratio 15:1 and subsequent treatment of the reaction mixture with
K2CO3 instead of Na2CO3 solution.
[17] With lithium iodide/thiophenol at 1008C (F. Elsing, J. Schreiber,
A. Eschenmoser, Helv. Chim. Acta 1960, 43, 113) in DMF/
pyridine no reaction was observed. Only after the addition of
[12]crown-4 did the cleavage of the methyl ester begin (yield:
47%)
Received: September 19, 2003 [Z52919]
Keywords: carbohydrates · combinatorial chemistry ·
.
[18] R. Knorr, A. Trzeciak, W. Bannwarth, D. Gillessen, Tetrahedron
Lett. 1989, 30, 1927.
orthogonal protecting groups · protecting groups ·
solid-phase synthesis
[19] K. Thieme, G. Zech, H. Kunz, H. W. Spiess, I. Schnell, Org. Lett.
2002, 4, 1559. Rink tentagel resin (Rapp Polymere, Tübingen,
Germany) loaded with 0.24 mmolgÀ1 benzhydryl amine was
shaken in dimethyl formamide with 1.2equivalents of the S-
glycosylmercaptocarboxylic acid 5 for 12h. After extensive
washing with dimethyl formamide, dichloromethane, methanol,
dichloromethane, and diethyl ether and drying, the remaining
amino groups were treated with methanesulfonyl chloride. The
loading with the carbohydrate scaffolds was determined by
integration of the TBS and methanesulfonamide signals in the
HRMAS NMR spectra, by elemental analysis, and by UV
analysis of subsequent products (11–13) and amounted corre-
spondingly to 0.19 mmolgÀ1 (yield of 80%).
[20] E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190.
[21] Y. Oikawa, T. Nishi, O. Yonemitsu, Tetrahedron Lett. 1983, 24,
4037.
[22] a) M. Honda, H. Morita, I. Nakagura, J. Org. Chem. 1997, 62,
8932; b) T. Opatz, H. Kunz, Tetrahedron Lett. 2000, 41, 10185.
[23] B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556; Angew.
Chem. Int. Ed. 1978, 17, 522.
[1] Reviews: a) L. A. Thomson, J. A. Ellman, Chem. Rev. 1996, 96,
555; b) J. S. Früchtel, G. Jung, Angew. Chem. 1996, 108, 19;
Angew. Chem. Int. Ed. Engl. 1996, 35, 17; c) F. Balkenhohl, C.
von dem Bussche-Hünnefeld, A. Lansky, C. Zechel, Angew.
Chem. 1996, 108, 2436; Angew. Chem. Int. Ed. Engl. 1996, 35,
2288; d) A. Netzi, J. M. Ostresh, R. A. Houghten, Chem. Rev.
1997, 97, 449.
[2] a) H. M. Geysen, S. J. Bartling, R. H. Meloen, Proc. Natl. Acad.
Sci. USA 1985, 82, 178; b) R. A. Houghten, Proc. Natl. Acad. Sci.
USA 1985, 82, 5131; A. Furka, F. Sebestyen, M. Asgedom, G.
Dibo, Int. J. Pept. Protein Res. 1991, 37, 487.
[3] a) I. Ugi, J. Prakt. Chem. 1997, 339, 499; b) P. A. Tempest, S. D.
Brown, R. W. Armstrong, Angew. Chem. 1996, 108, 689; Angew.
Chem. Int. Ed. Engl. 1996, 35, 640.
[4] a) D. Leipert, D. Nopper, M. Bauser, G. Gauglitz, G. Jung,
Angew. Chem. 1998, 110, 3506; Angew. Chem. Int. Ed. 1998, 37,
3308.
[5] G. Wess, K. Bock, H. Kleine, M. Kurz, W. Guba, H. Hemmerle,
E. Lopez-Calle, K.-H. Baringhaus, H. Glombik, A. Ehnsen, W.
Kramer, Angew. Chem. 1996, 108, 2363; Angew. Chem. Int. Ed.
Engl. 1996, 35, 2222.
[6] M. J. Plunkett, J. A. Ellman, J. Org. Chem. 1997, 62, 2885.
[7] P. A. Tempest, R. W. Armstrong, J. Am. Chem. Soc. 1997, 119,
7607.
[24] L. A. Carpino, G. Y. Han, J. Am. Chem. Soc. 1970, 92, 5748.
[25] H. Staudinger, J. Meyer, Helv. Chim. Acta 1919, 2, 635.
[26] W. Kꢀnig, R. Geiger. Chem. Ber. 1970, 103, 788.
[27] R. Ramage, J. Green, Tetrahedron Lett. 1987, 28, 2287.
Angew. Chem. Int. Ed. 2004, 43, 1104 –1107
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1107