916
D. J. Dixon et al. / Tetrahedron: Asymmetry 15 (2004) 913–916
Table 4. Alkylation of 9
Acknowledgements
Entry
a
RX
Yield (%)a
42
Ratio 10:11b;c
We thank Vernalis for a studentship (to RAJH), the
National Mass Spectrometry Service at Swansea for
HRMS and Prof. Steven V. Ley for continued and
valued support.
Br
3.2:1
Br
I
b
c
64
43
22
1:1.3
1:35d
1:7.4
I
d
a Isolated yield 10 and 11 after column chromatography.
b From crude 1H NMR.
References and notes
c Stereochemistries were assigned by analogy with the previous cases
and are supported by the relative positions of the 1H NMR signals for
the methine proton of the major and minor diastereoisomers.
d Stereochemistry determined by X-ray crystallography.
€
1. Schollkopf, U.; Groth, U.; Deng, C. Angew. Chem., Int.
Ed. Engl. 1981, 20, 798–799.
€
2. Pettig, D.; Schollkopf, U. Synthesis 1988, 173–175.
3. Williams, R. M.; Sinclair, P. J.; Zhai, D.; Chen, D. J. Am.
Chem. Soc. 1988, 110, 1547–1557.
4. Williams, R. M.; Im, M.-N. Tetrahedron Lett. 1988, 29,
6075–6078.
5. Williams, R. M.; Im, M.-N. J. Am. Chem. Soc. 1991, 113,
9276–9286.
Attack at Si face
6. Seebach, D.; Juaristi, E.; Miller, D. D.; Schickli, C.;
Weber, T. Helv. Chim. Acta 1987, 70, 237–261.
7. Fitzi, R.; Seebach, D. Tetrahedron 1988, 44, 5277–5292.
8. Seebach, D.; Gees, T.; Schuler, F. Liebigs Ann. Chem.
1993, 785–799.
9. Studer, A.; Seebach, D. Liebigs Ann. Chem. 1995, 217–222.
10. Myers, A. G.; Gleason, J. L. Org. Syn. 1999, 76, 57–76.
11. Bull, S. D.; Davies, S. G.; Epstein, S. W.; Leech, M. A.;
Ouzman, J. V. A. J. Chem. Soc., Perkin Trans. 1 1998,
2321–2330.
O
O
N
M
O
O
N
Attack at Re face
12. Review: Duthaler, R. O. Tetrahedron 1994, 50, 1539–1650.
13. Review: Hegedus, L. Acc. Chem. Res. 1995, 28, 299–305.
14. Review: Bloch, R. Chem. Rev. 1998, 98, 1407–1438.
15. Review: Calmes, M.; Daunis, J. Amino Acids 1999, 16,
215–250, and references cited therein.
16. Liu, W.-Q.; Roques, B. P.; Garbay-Jaureguiberry, C.
Tetrahedron: Asymmetry 1995, 6, 647–650.
17. Josien, H.; Martin, A.; Chassaing, G. Tetrahedron Lett.
1991, 32, 6547–6550.
Figure 2.
saturated alkyl halides. However, with unsaturated
derivatives, pre-coordination of the unsaturated system
appears to assist delivery to the Si face. This could be
through secondary p-cation interactions29 between the
electrophile and the cation in the transition state. In the
Boc building block, the increased steric bulk of the tert-
butyl group will disrupt any p-cation interactions while
blocking the Si face to a greater extent and hence
increasing the selectivity for alkylation at the Re face. As
the amount of p-cation stabilisation will depend on the
nature and substituents of the p system, some validity
is given to this model by the variations noted above
(Fig. 2).
ꢀ
18. Chinchilla, R.; Falvello, L. R.; Galindo, N.; Najera, C.
J. Org. Chem. 2000, 65, 3034–3041.
19. Tanaka, K.; Ahn, M.; Watanabe, Y.; Fuji, K. Tetrahe-
dron: Asymmetry 1996, 7, 1771–1782.
20. Iwanowicz, E. J.; Blomgren, P.; Cheng, P. T. W.; Smith,
K.; Lau, W. F.; Pan, Y. Y.; Gu, H. H.; Malley, M. F.;
Gougoutas, J. Z. Synlett 1998, 664–666.
21. Dixon, D. J.; Harding, C. I.; Ley, S. V.; Tilbrook, D. M.
G. Chem. Commun. 2003, 468–469.
22. For a discussion of the different approaches to the
synthesis of a-amino acids see: Williams, R. M. Synthesis
of Optically Active a-Amino Acids; Pergamon: Oxford,
1989.
23. Evans, D. A.; Takacs, J. M. Tetrahedron Lett. 1980, 21,
4233–4236.
3. Conclusion
In conclusion, a new chiral building block for the syn-
thesis of a-amino carbonyl compounds has been devel-
oped. Facially selective enolate alkylation reactions are
used to create a new stereogenic centre. Although the
selectivities are not yet optimal, in most cases the dia-
stereomeric products can be separated. Further optimi-
sation of the system and its application to natural
product synthesis, as well as an enhanced understanding
of the curious reversal of selectivity in the alkylation
with aryl or nonaryl electrophiles, will be reported in
due course.
24. Brown, H. C.; Tsukamoto, A. J. Am. Chem. Soc. 1964, 86,
1089–1095.
ꢀ
ꢀ
25. Najera, C.; Abellan, T.; Sansano, J. M. Eur. J. Org. Chem.
2000, 2809–2820.
€
26. Noe, C. R.; Knollmuller, M.; Steinbauer, G.; Jangg, E.;
€
Vollenkle, H. Chem. Ber. 1988, 121, 1231–1239.
ꢀ
27. Adderley, N. J.; Buchanan, D. J.; Dixon, D. J.; Laine, D.
I. Angew. Chem., Int. Ed. 2003, 42, 4241–4244.
28. Dixon, D. J.; Ley, S. V.; Tate, E. W. J. Chem. Soc., Perkin
Trans. 1 2000, 2385–2394.
29. Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303–
1324.