5908
G. Jalce et al. / Tetrahedron Letters 47 (2006) 5905–5908
`
5. (a) Szlosek, M.; Figadere, B. Angew. Chem., Int. Ed. 2000,
function into the amino group, affording the free alcohol
17 in 75% yield (only product obtained from 15 is shown
in Scheme 5). Oxidation of the secondary alcohol of 17
to the carbonyl derivative and removal of the para-
aminobenzoate group will give the d-hydroxy ketone 1
which under acidic conditions should be in equilibrium
with the thermodynamic tetrahydropyran cyclized prod-
uct (Scheme 6). These transformations are now under
study in our laboratories.
39, 1799; Angew. Chem. 2000, 112, 1869; (b) Szlosek, M.;
`
´
Franck, X.; Figadere, B.; Cave, A. J. Org. Chem. 1998, 63,
5169; (c) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi,
G. Synlett 1999, 1333.
6. Jalce, G.; Seck, M.; Franck, X.; Hocquemiller, R.;
`
Figadere, B. J. Org. Chem. 2004, 69, 3240.
7. Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.;
Uehling, D. E.; Schreiber, S. L. J. Am. Chem. Soc. 1990,
112, 5583.
`
´
8. Figadere, B.; Harmange, J.-C.; Laurens, A.; Cave, A.
Tetrahedron Lett. 1991, 32, 7539.
In conclusion, we have prepared enantioselectively the
C13–C29 skeleton of caribenolide I with an excellent con-
trol of the absolute configurations of the stereogenic
centres in 15 steps. The strategy used therein will allow
us to prepare several diastereomers of the target mole-
cule by varying the reaction conditions, chiral catalysts
and starting material, for further comparisons with the
natural product. The connection with the C1–C12 frag-
ment4 is now under study in our laboratories.
9. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972,
94, 6190.
`
10. Franck, X.; Hocquemiller, R.; Figadere, B. J. Chem. Soc.,
Chem. Commun. 2002, 160.
11. (a) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem.
Soc. 1962, 84, 1745; (b) Corey, E. J.; Fuchs, P. L.
Tetrahedron Lett. 1972, 13, 3769.
12. Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
13. Evans, A. B.; Knight, D. W. Tetrahedron Lett. 2001, 42,
6947.
14. For a related case, see: Arcadi, A.; Cacchi, S.; Marinelli,
F. Tetrahedron 1993, 49, 4955.
15. Oppolzer, W.; Snowden, R. L.; Simmons, D. P. Helv.
Chim. Acta 1981, 64, 2002.
Acknowledgements
´
We wish to thank the Departement de la Guadeloupe
16. Spectroscopic data of ketone 14: 1H NMR (400 MHz,
CDCl3) d ppm: 0.04 (s, 6H); 0.58 (m, 6H); 0.88 (br s, 12H);
0.93 (t, 9H, J = 8.0 Hz); 1.20–1.49 (m, 8H); 1.62–2.20 (m,
6H); 2.30–2.54 (m, 3H); 2.58 (dd, 0.4 · 1H, J = 2.7,
4.7 Hz); 2.64–2.73 (m, 1H); 2.76 (m, 1H); 2.82 (t,
0.4 · 1H, J = 4.5 Hz); 2.84 (dd, 0.6 · 1H, J = 2.6,
5.5 Hz); 2.91 (t, 0.4 · 1H, J = 6.1 Hz); 3.10 (m,
0.4 · 1H); 3.18 (q, 0.6 · 1H, J = 3.1 Hz); 3.42 (t,
0.6 · 1H, J = 3.6 Hz); 3.54 (m, 0.6 · 1H); 3.58 (m,
0.4 · 1H) 3.81 (m, 1H); 3.89 (m, 1H); 4.19 (m, 0.4 · 1H);
4.26 (m, 0.6 · 1H); 4.49 (dd, 0.6 · 1H, J = 1.34, 12.0 Hz);
4.59 (d, 0.4 · 1H, J = 11.8 Hz); 4.66 (d, 0.6 · 1H,
J = 12.0 Hz); 4.83 (d, 0.4 · 1H, J = 11.8 Hz); 7.32 (m,
5H). 13C NMR (75 MHz, CDCl3) d ppm: À4.7; À4.2; 4.9;
5.0; 6.9; 14.0; 18.2; 22.8; 26.0; 26.3; 27.3; 27.5; 27.8; 29.7;
32.4; 38.4; 39.7; 43.9; 44.7; 48.7; 48.8; 51.0; 53.1; 72.1; 73.1;
74.9; 75.1; 78.2; 81.5; 82.8; 127.5; 127.6; 127.8; 128.0;
128.2, 138.3; 138.4 ; 208.7; 208.8. ESI–MS m/z: 671
(M+Na+, 100). IR (CHCl3) cmÀ1: 2955; 2925; 2875; 2855;
1715; 1460; 1415; 1360; 1250; 1090; 1005; 940; 835; 775;
735.
for a fellowship to G.J. and J. C. Jullian for his help
in the NMR experiments.
References and notes
1. Bauer, I.; Maranda, L.; Young, K. A.; Shimizu, Y.;
Fairchild, C.; Cornell, L.; MacBeth, J.; Huang, S. J. Org.
Chem. 1995, 60, 1084.
2. (a) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi,
Y.; Yamasu, T.; Sasaki, T.; Hirata, Y. Tetrahedron Lett.
1986, 27, 5755; (b) Norcross, R. D.; Paterson, I. Chem.
Rev. 1995, 95, 2041; (c) Bauer, I.; Maranda, L.; Shimizu,
Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J.
J. Am. Chem. Soc. 1994, 116, 2657; (d) Ishibashi, M.;
Ohizumi, Y.; Hamashima, M.; Nakamura, H.; Hirata, Y.;
Sasaki, T.; Kobayashi, J. J. Chem. Soc., Chem. Commun.
1987, 1127; (e) Kobayashi, J.; Ishibashi, M.; Nakamura,
H.; Ohizumi, Y.; Yamasu, T.; Hirata, Y.; Sasaki, T.; Ohta,
T.; Nozoe, S. J. Nat. Prod. 1989, 52, 1036; For an
overview of synthetic efforts, see: (f) A¨ıssa, C.; Riveiros,
17. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1968, 90,
3732; (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc.
1973, 95, 512; (c) Dale, J. A.; Dull, D. L.; Mosher, H. S.
J. Org. Chem. 1969, 34, 2543; (d) Sullivan, G. R.; Dale, J.
A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1973, 38,
2143; (e) Tan, R. X.; Jensen, P. R.; Williams, P. G.;
Fenical, W. J. Nat. Prod. 2004, 67, 1374; (f) Seco, J. M.;
Quinoa, E.; Riguera, R. Chem. Rev. 2004, 104, 17.
R.; Ragot, J.; Furstner, A. J. Am. Chem. Soc. 2003, 125,
¨
15512.
3. Seck, M.; Seon-Meniel, B.; Jullian, J.-C.; Franck, X.;
`
Hocquemiller, R.; Figadere, B. Lett. Org. Chem. 2006, 3,
390.
4. Seck, M.; Franck, X.; Seon-Meniel, B.; Hocquemiller, R.;
`
Figadere, B. Tetrahedron Lett. 2006, 47, 4175.