D. C. Grohs, W. Maison / Tetrahedron Letters 46 (2005) 4373–4376
4375
In addition, 3,5-disubstituted prolines have been shown
to be versatile precursors for 5-substituted diaza-
bicycloalkanes like 15. These compounds are of special
value to us because they permit the conjugation of
diazabicycloalkanes to other functional molecules, such
as reporter groups or a solid phase. In consequence, di-
azabicycloalkanes 15 are modular dipeptide mimetics15
and might be useful scaffolds for tumor imaging and
applications in combinatorial chemistry.
O
t
CbzHN
HO
CO2 Bu
R
R
N
HO
i
3
5
N
CbzHN
O
t
CO2 Bu
t
CO2 Bu
8a-d
13a-d
ButO2C
ii
HO
t
O
N
t
O
5
CO2 Bu
CO2 Bu
R
N
iii
8
5
CbzN
Acknowledgements
CbzN
t
O
CO2 Bu
H
H
t
t
CO2 Bu
We gratefully acknowledge material support and helpful
discussions of Professor Dr. Chris Meier. We thank the
Department of Chemistry of the University of Ham-
burg, Deutsche Forschungsgemeinschaft (MA 2529)
and the Fonds der Chemischen Industrie for financial
support. Furthermore, we are grateful to BASF AG,
Bayer AG, VWR International GmbH, and Degussa
AG for generous donations of chemicals. D.C.G.
thanks the Fonds der Chemischen Industrie for a
Promotionsstipendium.
CO2 Bu
14a-d
15
Scheme 3. Synthesis of 3,5-disubstituted prolines 13a–d and the
two-step conversion to 5-substituted diazabicycloalkane 15. Residue
t
t
R: (CH2)2CO2 Bu (a); CH2CO2Me (b); (CH2)2CO2 Bu (c); (CH2)2O-
TBDMS (d); Reagents and conditions: (i) NaIO4, Ph3P@CHCO2R2,
Et2O/H2O, rt, 12 h (13–55%); (ii) KOtBu, THF/H2O, reflux, 6 h, rt,
15 h (37–54%); (iii) O3, DCM, À78 °C (50%).
carbamate, making the 3,5-trans substitution a less
favorable configuration. This hypothesis is in accor-
dance with findings from a periodate cleavage of dipep-
tide 16 with glycine as a C-terminal amino acid (Scheme
4).5a,14
References and notes
1. (a) Gante, J. Angew. Chem. 1994, 106, 1780–1802; Angew.
Chem., Int. Ed. Engl. 1994, 33, 1699–1720; (b) Giannis, A.;
Kolter, T. Angew. Chem. 1993, 105, 1303–1326; Angew.
Chem., Int. Ed. Engl. 1993, 32, 1244–1267.
2. Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.;
Lubell, W. D. Tetrahedron 1997, 53, 12789–12854.
3. For a review see: Maison, W.; Prenzel, A. H. G. P.
Synthesis 2005, 1031–1049.
In this case, the oxidative cleavage gives aminal 17 as a
mixture of C5-epimers. After reduction of the aldehyde
function in 17, both diastereoisomers (5S)-18 and (5R)-
18 were fairly stable and separated by column chroma-
tography on silica gel.
4. (a) Belvisi, L.; Colombo, L.; Manzoni, L.; Potenza, D.;
Scolastico, C. Synlett 2004, 1449–1471; (b) Halab, L.;
Gosselin, F.; Lubell, W. D. Biopolymers 2000, 55, 101–
122; (c) Hruby, V. J.; Li, G.; Haskell-Luevano, C.;
Shenderovich, M. Biopolymers 1997, 43, 219–266.
In summary, we have presented a short and efficient syn-
thetic route to 3,5-disubstituted proline derivatives and
their conversion to 5-substituted diazabicycloalkanes
via a base mediated intramolecular Michael type addi-
tion. Key step is an oxidative cleavage of dipeptide 8
to give bisaldehyde 9. Depending on steric demand
and solvent effects, these intermediate bisaldehydes can
be trapped by Wittig reagents to give 3,5-disubstituted
proline derivatives like 13 or cyclized to bicyclic aminals
like 11. Yields of this cyclization can be significantly
improved in slightly acidic solvents like chloroform.
5. (a) Maison, W.; Kuntzer, D.; Grohs, D. Synlett 2002,
¨
1795–1798; (b) Tong, Y.; Fobian, Y. M.; Wu, M.; Boyd,
N. D.; Moeller, K. D. J. Org. Chem. 2000, 65, 2484–2493;
(c) Chan, M. F.; Raju, B. G.; Kois, A.; Varughese, J. I.;
Varughese, K. I.; Balaji, V. N. Heterocycles 1999, 51, 5–8;
(d) St. Denis, Y.; Augelli-Szafran, C. E.; Bachand, B.;
Berryman, K. A.; DiMaio, J.; Doherty, A. M.; Edmunds,
J. J.; Leblond, L.; Levesque, S.; Narasimhan, L. S.;
Penvose-Yi, J. R.; Rubin, J. R.; Tarazi, M.; Winocour, P.
D.; Siddiqui, M. A. Bioorg. Med. Chem. Lett. 1998, 8,
3193–3198; (e) Plummer, J. S.; Berryman, K. A.; Cai, C.;
Cody, W. L.; DiMaio, J.; Doherty, A. M.; Edmunds, J. J.;
He, J. X.; Holland, D. R.; Levesque, S.; Kent, D. R.;
Narasimhan, L. S.; Rubin, J. R.; Rapundalo, S. T.;
Siddiqui, M. A.; Susser, A. J.; St. Denis, Y.; Winocourt, P.
D. Bioorg. Med. Chem. Lett. 1998, 8, 3409–3414.
O
5
CO2Et
N
H
OH
CbzN
ii
CbzHN
HO
O
5
CO2Et
OH
HO
N
H
(5S)-18, 41 %
O
N
O
i
6. Maison, W.; Grohs, D. C.; Prenzel, A. H. G. P. Eur. J.
Org. Chem. 2004, 1527–1543.
CbzN
+
O
5
CO2Et
CO2Et
OH
17
7. Tandem sequence of oxidative cleavage of 8 and cycliza-
tion of bisaldehyde 9 to give diazabicycloalkane 11 was
carried out in analogy to the method previously
described,6 however, the crude product that was obtained
after oxidative cleavage was dissolved in CHCl3 and
stirred for 14 h at rt before the solvent was evaporated to
give 11 in quantitative yield.
N
H
OH
16
CbzN
OH
(5R)-18, 17 %
Scheme 4. Periodate cleavage of glycine containing dipeptide 16.
Reagents and conditions: (i) NaIO4, acetone/H2O, À25 °C, 30 min;
(ii) NaBH4, MeOH, 0 °C, 1 h.
8. Beausoleil, E.; LÕArcheveque, B.; Belec, L.; Atfani, M.;
Lubell, W. D. J. Org. Chem. 1996, 61, 9447–9454;