Chemistry Letters Vol.33, No.4 (2004)
453
References and Notes
(a)
(b)
1
For structure of tautomycin, see: a) M. Ubukata, X.-C. Cheng, and
K. Isono, J. Chem. Soc., Chem. Commun., 1990, 244. b) X.-C.
Cheng, M. Ubukata, and K. Isono, J. Antibiot., 43, 809 (1990). c)
M. Ubukata, X.-C. Cheng, M. Isobe, and K. Isono, J. Chem. Soc.,
Perkin Trans. 1, 1993, 617.
A. Takai, K. Sasaki, H. Nagai, G. Mieskes, M. Isobe, K. Isono, and
T. Yasumoto, Biochem. J., 306, 657 (1995).
Y. Sugiyama, I. I. Ohtani, M. Isobe, A. Takai, M. Ubukata, and K.
Isono, Bioorg. Med. Chem. Lett., 6, 3 (1996).
J. Goldberg, H. Huang, Y. Kwon, P. Greengard, A. C. Nairn, and J.
Kuriyan, Nature, 376, 745 (1995).
J. T. Maynes, K. S. Bateman, M. M. Cherney, A. K. Das, H. A. Luu,
C. F. B. Holmes, and M. N. G. James, J. Biol. Chem., 276, 44078
(2001).
1.0
1.0
9
12
2
3
4
5
0.5
0.1
0.5
0.1
9
12
11
400
500
600
700
300
400
500
Wavelength/nm
Wavelength/nm
6
7
8
A. Kita, S. Matsunaga, A. Takai, H. Kataiwa, T. Wakimoto, N.
Fusetani, M. Isobe, and K. Miki, Structure, 10, 715 (2002).
M. Kurono, A. Shimomura, and M. Isobe, Tetrahedron, 60, 1773
(2004).
Figure 1. (a) Fluorescence emission spectra of 9 and 12 in ace-
tonitrile (0:2 ꢀ 10ꢃ4 M) at room temperature. (b) UV–vis ab-
sorption spectra of 9, 11, and 12 in acetonitrile (1:0 ꢀ 10ꢃ4 M)
at room temperature.
Fluorescent unit 10: UV–vis (CH3CN) ꢀmax (") 340 nm (3509). IR
(KBr) ꢀmax 3449, 2926, 1637 cmꢃ1. FL (CH3CN) ꢀex 346 nm, ꢀem
522 nm. 1H NMR (400 MHz, CDCl3) ꢁ 2.89 (6H, s, N(CH3)2), 3.08
(2H, ddd, J ¼ 7:5, 6.0, 4.0, NHCH2CH2NH), 3.39 (2H, ddd, J ¼
7:5, 6.0, 4.0, NHCH2CH2NH), 4.07 (2H, s, COCH2O), 5.53 (1H,
br t, J ¼ 6:0, CH2NH), 5.75 (2H, br s, ONH2), 6.83 (1H, br s,
NHCH2), 7.19 (1H, br d, J ¼ 7:5, ArH), 7.52 (1H, dd, J ¼ 8:5,
7.5, ArH), 7.57 (1H, dd, J ¼ 8:5, 7.5, ArH), 8.23 (1H, dd, J ¼
7:5, 1.5, ArH), 8.26 (1H, br d, J ¼ 8:5, ArH), 8.55 (1H, br d, J ¼
8:5, ArH). ESI–Q–TOF–MS calcd for C16H23N4O4Sþ 367.1440
([M + H]þ); found 367.1499.
20
24
Benzophenone
Maleimide
1'
24
20
1
9
Fluorescent photoaffinity probe 12: UV–vis (CH3CN) ꢀmax (")
333 nm (4809). IR (KBr) ꢀmax 3421, 2927, 1728, 1663, 1540,
1320, 1098, 793 cmꢃ1. FL (CH3CN) ꢀex 347 nm, ꢀem 518 nm. 1H
NMR (600 MHz, CDCl3) ꢁ 0.76 (3H, d, J ¼ 6:8, 7–CH3), 0.85–
1.70 (18H, m), 0.79 (3H, d, J ¼ 7:0 Hz, 13-CH3), 0.95 (3H, d,
J ¼ 7:0 Hz, 25-CH3), 0.95 (3H, d, J ¼ 7:0 Hz, H-26), 0.96 (3H, d,
J ¼ 7:0 Hz, 15-CH3), 1.06 (3H, d, J ¼ 7:0 Hz, 19-CH3), 1.08 (3H,
d, J ¼ 7:0 Hz, 3-CH3), 1.84 (1H, tt, J ¼ 13:0, 5.0 Hz, H-12b),
1.92 (3H, s, H-1), 2.10 (1H, m, H-25), 2.18 (3H, s, 50-CH3), 2.45
(1H, m, H-3), 2.67 (1H, m, H-19), 2.71 (1H, dd, J ¼ 17:5, 4.0 Hz,
H-21a), 2.84 (1H, dd, J ¼ 16:0, 9.0 Hz, H-20a), 2.87 (6H, s,
N(CH3)2), 2.91 (1H, dd, J ¼ 16:0, 4.0 Hz, H-20b), 2.96 (1H, dd,
J ¼ 17:0, 8.0 Hz, H-21b), 3.09 (2H, m, NHCH2CH2NH), 3.14
(1H, t, J ¼ 10:0 Hz, H-6), 3.23 (1H, dd, J ¼ 10:0, 2.0 Hz, H-14),
3.24 (1H, br s, 22-OH), 3.27 (1H, dd, J ¼ 6:0, 2.0 Hz, H-23), 3.33–
3.37 (3H, m, NHCH2CH2NH, 18-OH), 3.40 (3H, s, OCH3), 3.70
(1H, m, H-18), 4.36 (1H, m, H-22), 4.37 (2H, s, H-1000), 4.43 (1H,
br s, 30-OH), 4.56 (1H, d, J ¼ 16:0 Hz, H-100a), 4.60 (1H, d, J ¼
16:0 Hz, H-100b), 5.08 (1H, t, J ¼ 6:0 Hz, H-24), 5.18 (1H, m, H-
30), 5.63 (1H, t, J ¼ 6:0, SO2NHCH2), 7.17 (1H, br d, J ¼ 7:5, H-
9000), 7.44 (1H, t, J ¼ 8:0, H-700), 7.47–7.52 (4H, m, H-600, 1200,
1400, 13000), 7.54 (1H, dd, J ¼ 8:5, 7.5, H-8000), 7.60 (1H, t, J ¼
7:5 Hz, H-1300), 7.80 (3H, m, H-400, 1100, 1500), 7.90 (1H, br t, J ¼
6:0, CH2NHCO), 7.96 (1H, br d, J ¼ 8:0 Hz, H-800), 8.16 (1H, br
s, CONHAr), 8.20 (1H, dd, J ¼ 7:0, 1.0, H-12000), 8.26 (1H, br d,
J ¼ 8:5, H-7000), 8.50 (1H, br d, J ¼ 8:50, H-14000). ESI–Q–TOF–
MS calcd for C72H99N6O18Sþ 1367.6737 ([M + H]þ); found
1367.6808.
Dansyl amide
Spiro ketal
Spiro ketal
Maleic acid
(a)
(b)
Figure 2. Proposed 3-D structures of 2 and 12; (a) One of the
stable conformations of 2; (b) One of the energy-minimized
conformations of 12 on the basis of 2.
Figure 2a shows one of the stable conformations of tautomy-
cin diacid (2), which was reported previously through computer
calculation with Biograf and NMRgraf programs using NOESY
data.3 On the basis of these data, we calculated for 12 to have en-
ergy-minimized conformer with a Macromodel (MMFF force
field).10 One of the resulting six conformers within 12.55 kJ/
mol is shown in Figure 2b. The distance between benzophenone
ꢀ
and dansyl amide moieties is 3.8–5.5 A, which is short enough
for the interaction. These results indicate that the fluorescence
quenching occurred owing to the folded conformation of
TTM. Moreover, reduction of 12 with sodium borohydride in
MeOH led to two benzhydrol derivatives (13, 14), which exhib-
ited the usual fluorescence intensity.11,12 Recovery of the fluores-
cence might be due to the absence of interacting chromophore.
The ratio of fluorescent intensity between of 12 and 13 or 14
was about 1:10 by the fluorophotometer equipped on a HPLC.
This means that the fluorescent photoaffinity labeled peptides
should have the enough intensity, and could be detected by a flu-
orophotometer. Further studies are in progress in order to detect
the labeled peptides through this strategy.
10 Computer calculation was carried out on a Silicon Graphics Octan
computer. Energy-minimization was performed on 10,000 initial
starting conformations with global minimum search program using
Macromodel version 7.1 with MMFF force filed. a) F. Mohamadi,
N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield,
G. Chang, T. Hendrickson, and W. C. Still, J. Comput. Chem., 11,
440 (1990). b) T. A. Halgren, J. Comput. Chem., 20, 730 (1999),
and references cited therein.
11 13: Reduced compound at C900 and C20, ESI–Q–TOF–MS calcd for
C72H104N6O18S2þ 686.359 ([M + 2H]2þ); found 686.332.
12 14: Reduced compound at C900, C20 and C2, ESI–Q–TOF–MS calcd
for C72H106N6O18S2þ 687.367 ([M + 2H]2þ); found 687.341.
This work was financially supported by a Grant-in-Aid from
the Ministry of Education, Culture, Sports, Science and Technol-
ogy, and a grant from Ono Pharm. Co., Ltd. We are grateful to
Prof. K. Isono at ex-Riken Institute and Kaken Pharm. Co.,
Ltd. for supplying a crude tautomycin, Mr. K. Koga for special
NMR spectroscopy, and Prof. N. Harada at Tohoku Univ. for
discussions.
Published on the web (Advance View) March 20, 2004; DOI 10.1246/cl.2004.452