Y. Ishino et al. / Tetrahedron Letters 45 (2004) 3503–3506
Table 2. Reaction of aldehydes and benzoyl chloridea
3505
OCOR2
X
OCOR2
R1CH
3A
R1CH
Zn/TMSCl
DCE, rt
R2-COX
R1-CHO +
+
OCOR2
3B
2
1
Entry
RCHO (1)
R0COX (2)
Yield of 3 (%)
Ratio of 3A/3B (%)b
1
2
n-PrCHO (1a)
1a
1a
PhCOCl (2a)
2a
MeCOCl (2b)
95
100
95
4/1
0/1c
2/1
2/1
2/1
0/1c
1/2
2/1
1/1
0/1c
3
4
n-HexCHO (1b)
iso-PrCHO (1c)
1c
2a
2a
2a
2a
2a
2a
2a
98
85
5
6
47
52
7
sec-BuCHO (1d)
8
PhCH2CH2CHO (1e)
t-BuCHO (1f)
1f
71
9
10
100
62
a General reaction conditions: benzoyl chloride 30 mmol, aldehydes 10 mmol, Zn 60 mmol, and TMSCl 3 mmol in DCE 40 mL at rt for 4 h.
b Isolated yield by SiO2 column chromatography.
c At reflux temperature.
Table 3. Reaction of aldehydes and acylating agenta
acyl chlorides in the presence of TMSCl could be effec-
tively reacted with aldehydes to give selectively the
corresponding a-haloacylation and gem-bisacylation
products, a-haloalkylesters (3A), and 1,1-dicarboxylates
(acylals) (3B), in good to excellent yields. The present
method complements the existing synthetic methodol-
ogy due to some advantageous properties of zinc
reagents such as availability and selectivity, operational
simplicity, and low toxicity.
Entry RCHO (1)
R0COX (2)
Yield of 3 Ratio of
3A/3B (%)b
(%)
1
2
3
4
5
6
1a
1a
1a
1a
1c
1e
PhCOBr (2c)
PhCOCN (2d)
(PhCO)2O (2e)
(MeCO)2O (2f)
2f
59
56
1/7
13/1
0/1
100
100
78
0/1
0/1
2f
52
0/1
a General reaction conditions: 2 30 mmol, 1 10 mmol, Zn 60 mmol, and
TMSCl 3 mmol in DCE 40 mL at rt for 4 h.
b Isolated yield by SiO2 column chromatography.
References and notes
Although the details concerning the mechanism still
remain ambiguous, the reaction may proceed through
in situ generated organozinc compounds (I) as reaction
intermediates. In the reaction zinc metal may act as
Lewis acid, and then the complex (II) generated by the
reaction with aldehydes gave the products 3 by intra-
molecular transformation of chloro or carboxyl groups.9
The elucidation of the detailed reaction mechanism must
await further study (Scheme 2).
1. For example, (a) Knochel, P.; Singer, R. D. Chem. Rev.
1993, 93, 2117; (b) Erdik, E. Organozinc Reagents in
Organic Synthesis; CRC: Boca Raton, FL, 1996; (c)
Organozinc Reagents: A Practical Approach; Knochel, P.,
Jones, P., Eds.; Oxford University Press: New York, 1999;
(d) Knochel, P.; Millot, N.; Rodrigguez, A. L.; Tucker,
C. E. Org. React. 2001, 58, 417.
2. (a) Cardillo, G.; Simone, A. D.; Mingardi, A.; Tomasini, C.
Synlett 1995, 1131; (b) Yadav, J. S.; Srinivaa, D.; Reddy, G.
S.; Bindu, K. H. Tetrahedron Lett. 1997, 38, 8745; (c) Inoue,
K.; Shimizu, Y.; Shibata, I.; Baba, A. Synlett 2001, 1659;
(d) Haslam, E. Shikimic Acid Metabolism and Metabolites;
John Wiley and Sons: New York, 1993.
In conclusion, we have demonstrated that in situ gen-
erated zinc reagents from the reaction of zinc metal and
3. (a) Ishino, Y.; Mihara, M.; Nishihama, S.; Nishiguchi, I.
Bull. Chem. Soc. Jpn. 1998, 71, 2669; (b) Ishino, Y.;
Mihara, M.; Kageyama, M. Tetrahedron Lett. 2002, 43,
6601; (c) Ito, T.; Ishino, Y.; Mizuno, T.; Ishikawa, A.;
Kobayashi, J. Synlett 2002, 2116; (d) Iwai, T.; Ito, T.;
Mizuno, T.; Ishino, Y. Tetrahedron Lett., 2004, 45, 1083.
4. Greene, T. W. M.; Wuts, P. M. G. Protective Groups in
Organic Synthesis; 3rd ed.; John Wiley and Sons: New
York, 1999.
5. (a) Michie, J. K.; Miller, J. A. Synthesis 1981, 824; (b)
Thomas, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 1673;
(c) Karimi, B.; Seradj, H.; Ebrahimian, R. G. Synlett 2000,
623; (d) Carrigan, M. D.; Eash, K. J.; Oswald, M. C.;
Mohan, R. S. Tetrahedron Lett. 2001, 42, 8133; (e)
Norihiko, S.; Kuniaki, N.; Tsuneo, S. Synlett 2001, 1921;
(f) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.;
Nocchetti, M. Tetrahedron Lett. 2002, 43, 2709.
O
Zn
RCHO
+
Zn
PhCOX
X
Ph
I
Zn
H
O
O
O
R
O
R
Ph
Ph
X
X
H
II
X = Cl
3A
X = OCOR' 3B
Scheme 2. Possible reaction pathway.