3624
Z. Zhao et al. / Tetrahedron Letters 45 (2004) 3621–3624
(13) UV (MeOH) max 219, 270, 286 nm, min 231, 284 nm;
References and notes
1H NMR (CDCl3, 300 MHz) d 7.27 (s, 1H), 3.60 (s, 3H),
2.54 (t, J ¼ 6:3 Hz, 2H), 2.48 (t, J ¼ 6:3 Hz, 2H), 2.02
(pent, J ¼ 7:2 Hz, 2H), 1.72–1.64 (m, 4H); 1H NMR
(benzene-d6, 300 MHz) d 6.63 (s, 1H), 2.59 (s, 3H), 2.25–
2.18 (m, 4H), 2.01–1.90 (m, 2H), 1.40–1.28 (m, 4H); 13C
NMR (CDCl3, 75 MHz) d 137.3, 133.1, 115.7, 105.2, 97.2,
79.8, 71.7, 32.8, 25.9, 24.4, 19.4, 19.3, 19.2; MS (FAB) m=z
199.1233 ([Mþ1]þ [C13H15N2]¼199.1235); (14) UV
1. (a) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972,
94, 660; (b) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25.
2. See for example: Grissom, J. W.; Gunawardena, G. U.;
Klingber, D.; Huang, D. Tetrahedron 1996, 52, 6453.
3. Enediyne Antibiotics as Antitumor Agents; Borders, D. B.,
Doyle, T. W., Eds.; Marcel Dekker: New York, 1995.
4. (a) Bowles, D. M.; Anthony, J. E. Org. Lett. 2000, 2, 85;
(b) Grissom, J. W.; Calkins, T. L.; McMillen, H. A.; Jiang,
Y. J. Org. Chem. 1994, 59, 5833.
5. (a) Chen, X.; Tolbert, L. M.; Hess, D. W.; Henderson, C.
Macromolecules 2001, 34, 4104; (b) John, J. A.; Tour, J.
M. J. Am. Chem. Soc. 1994, 116, 5011.
6. (a) Schreiner, P. R. J. Am. Chem. Soc. 1998, 120, 4184; (b)
Nicolaou, K. C.; Zuccarello, G.; Ogawa, Y.; Schweiger, E.
J.; Kumazawa, T. J. Am. Chem. Soc. 1988, 110, 4866; (c)
Nicolaou, K. C.; Ogawa, Y.; Zuccarello, G.; Kataoka, H.
J. Am. Chem. Soc. 1988, 110, 7247.
7. (a) Alabugin, I. V.; Manoharan, M.; Kovalenko, S. V. Org.
Lett. 2002, 4, 1119; (b) Jones, G. B.; Warner, P. M. J. Am.
Chem. Soc. 2001, 123, 2134; (c) Jones, G. B.; Plourde, G.
W., II. Org. Lett. 2000, 2, 1757; (d) Choy, N.; Kim, C.-S.;
Ballestro, C.; Artigas, L.; Diez, C.; Lichtenberger, F.;
Shapiro, J.; Russell, K. C. Tetrahedron Lett. 2000, 41, 6955.
8. Magnus, P.; Fortt, S.; Pitterna, T.; Snyder, J. P. J. Am.
Chem. Soc. 1990, 112, 4986.
1
(MeOH) max 219, 268, 283 nm, min 211, 231, 281 nm; H
NMR (CDCl3, 300 MHz) d 7.31 (br s, 1H), 3.60 (s, 3H),
2.54 (t, J ¼ 6:0 Hz, 2H), 2.48 (t, J ¼ 6:0 Hz, 2H), 1.83–1.80
(m, 4H), 1.70–1.63 (m, 4H); 1H NMR (benzene-d6,
300 MHz) d 6.61 (s, 1H), 2.57 (s, 3H), 2.26 (t, J ¼ 6:3 Hz,
2H), 2.24 (t, J ¼ 6:3 Hz, 2H), 1.73–1.67 (m, 4H), 1.43–1.34
(m, 4H); 13C NMR (CDCl3, 75 MHz) d 136.3, 131.3, 122.2,
102.7, 94.8, 75.5, 70.0, 32.5, 27.4, 26.4, 26.3, 19.8, 19.5; MS
(FAB) m=z 213.1374 ([MH]þ [C14H17N2]¼213.1392); (16)
UV (MeOH) max 251, 258, 280, 290 nm, min 234, 255, 267,
287 nm; 1H NMR (CDCl3, 300 MHz) d 8.0 (s, 1H), 7.55 (s,
1H), 7.15 (s, 1H), 3.84 (s, 3H), 2.96–2.91 (m, 4H), 1.90–1.78
(m, 2H), 1.75–1.65 (m, 4H); 1H NMR (benzene-d6,
300 MHz) d 7.84 (s, 1H), 7.26 (s, 1H), 6.79 (s, 1H), 2.84–
2.76 (m, 4H), 2.68 (s, 3H), 1.70–1.62 (m, 4H), 1.59–1.50 (m,
2H); 13C NMR (CDCl3, 75 MHz) d 142.7, 141.0, 140.0,
139.0, 119.5, 109.4, 37.3, 37.0, 32.7, 29.3, 29.2; MS (EI) m=z
200.1302 (Mþ[C13H16N2]¼200.1314).
12. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 16, 1975, 4467.
9. (a) Zhao, Z. Masters Thesis, Brigham Young University,
Provo, UT, 2003; (b) Kim, G.; Kang, S.; Ryu, Y.; Keum,
G.; Joon Seo, M. Synth. Commun. 1999, 29, 507.
13. Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233.
14. Kinetics were followed by 1H NMR. Integrations for
resonances specific to the starting material were compared
to resonances specific to the products or anthracene as an
internal standard.
15. Molecular modeling calculations were performed using
MacSpartan Pro, Wave Function, Inc. Monte Carlo
conformational searches employed MMFF94 parameters,
and geometry optimizations were performed at the semi-
empirical level (PM3).
16. Similar dihedral angles have been reported for 3-aryl
substituted (Z) 3-ene-1,5-hexadiynes (see Ref. 7b).
17. (a) Koseki, S.; Fujimara, Y.; Hirama, M. J. Phys. Chem. A
1999, 103, 7672; (b) Kaneko, T.; Takahashi, M.; Hirama,
M. Tetrahedron Lett. 1999, 40, 2015; (c) Semmelhack, M.
F.; Neu, T.; Foubelo, F. J. Org. Chem. 1994, 59, 5038.
18. X-ray data for 5: The unit cell is trigonal, space group
10. Theoretical calculations indicate that the energy barrier for
imidazolium-fused enediynes is 2.8 kcal/mol greater than
for the corresponding imidazole-fused enediyne (see Ref. 7b).
11. All compounds gave clean 1H and 13C NMR spectra
consistent with the assigned structures, and molecular
formulas were confirmed by high resolution mass spec-
trometry (Mþ within ꢁ10 ppm of theory). Characterization
data for representative compounds follow: (5) UV (MeOH)
max 223, 275, 291 nm, min 239, 287 nm; 1H NMR (CDCl3,
300 MHz) d 12.95 (br s, 1H), 7.62 (s, 1H), 0.22 (s, 18H); 13
NMR (CDCl3, 75 MHz) d 135.6, 123.4, 101.0, 94.9, 0.001,
MS (FAB) m=z 283.1056
(MNaþ
C
ꢀ0.373;
[C13H20N2NaSi2]¼283.1063); (7a) UV (MeOH) max 220,
1
264 nm, min 244 nm; H NMR (CDCl3, 300 MHz) d 7.68
(s, 1H), 7.54–7.49 (m, 5H), 3.59 (s, 1H), 3.37 (s, 1H); H
1
NMR (benzene-d6, 300 MHz) 7.00 (s, 1H), 6.90–6.87 (m,
3H), 6.79–6.77 (m, 2H), 2.95 (s, 1H), 2.94 (s, 1H); 13C
NMR (CDCl3, 75 MHz) d 137.3, 135.5, 132.1, 129.8, 128.5,
127.9, 124.8, 88.4, 81.6, 76.0, 71.2; MS (EI) m=z 192.0680
(Mþ [C13H8N2]¼192.0688); (9a) UV (MeOH) max 241 nm;
1H NMR (CDCl3, 300 MHz) d 8.20 (br s, 1H), 7.94–7.90
ꢀ
ꢀ
P3221, with a ¼ b ¼ 10:986ð2Þ A, and c ¼ 13:724ð10Þ A,
3
ꢀ
V ¼ 1435:5ð11Þ A , Z ¼ 3. There were 889 independent
reflections (Rint ¼ 0:0599) with R1 ¼ 0:0515 for [I > 2sðIÞ].
Crystallographic data (excluding structure factors) have
been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication number CCDC
2317SH. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [fax: +44(0)-1223-336033 or
1
(m, 1H), 7.60–7.54 (m, 6H), 7.37–7.35 (m, 2H); H NMR
(benzene-d6, 300 MHz) 8.10 (m, 1H), 7.70 (br s, 1H), 7.19–
7.11 (m, 4H), 6.98–6.94 (m, 2H), 6.85–6.83 (m, 2H); 13C
NMR (CDCl3, 75 MHz) d 130.3, 128.3, 124.3, 123.1, 120.7,
110.8; MS (EI) m=z 194.0837 (Mþ [C13H10N2]¼194.0844);