ACS Catalysis
Page 4 of 6
1
2
3
AUTHOR INFORMATION
Corresponding Author
4
5
6
ACKNOWLEDGMENT
This work was supported by the European Research Council
under the European Community’s Seventh Framework
Program (FP7 2007-2013)/ERC Grant agreement no 25936
and the Alexander von Humboldt Foundation (Dr. Q. Lu.).
We also thank Dr. Eric A. Standley and Dr. Christian Mück-
Lichtenfeld for helpful discussions and the ZIV
Münster/PALMA for computational resources.
7
8
9
Scheme 3. Competition experiment between 1a and 1c
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Furthermore, for the dehydrative cycle, the KIE value from
the intermolecular competition experiment was 3.2 while a
kH/kD = 1.6 was observed from two parallel reactions. The KIE
results from the dehydrogenative cycle were 2.9 and 2.75,
respectively, from the corresponding intermolecular compe-
tition experiment and two parallel reactions (Scheme 4).
These results suggest that the cleavage of the C–H bond is
plausibly involved in the rate determining step.
REFERENCES
(1) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008,
47, 3317–3321.
(2) (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res.
2009, 42, 1074–1086; (b) Kulkarni, A. A.; Daugulis, O. Synthesis
2009, 2009, 4087–4109; (c) Nakamura, E.; Yoshikai, N. J. Org.
Chem. 2010, 75, 6061–6067; (d) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem.
Rev. 2011, 111, 1293–1314; (e) Wendlandt, A. E.; Suess, A. M.; Stahl,
S. S. Angew. Chem. Int. Ed. 2011, 50, 11062–11087; (f) Hickman, A.
J.; Sanford, M. S. Nature 2012, 484, 177–185; (g) Wang, C. Synlett
2013, 24, 1606–1613; (h) Gao, K.; Yoshikai, N. Acc. Chem. Res.
2014, 47, 1208–1219; (i) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015,
115, 3170–3387; (j) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W.
Chem. Rev. 2015, 115, 1622–1651.
(3) (a) Ackermann, L. J. Org. Chem. 2014, 79, 8948–8954; (b)
Gandeepan, P.; Cheng, C.-H. Acc. Chem. Res. 2015, 48, 1194–1206;
(c) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498–
525; (d) Yoshikai, N. ChemCatChem 2015, 7, 732–734.
(4) (a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai,
M. J. Am. Chem. Soc. 2014, 136, 5424–5431; (b) Sun, B.; Yoshino,
T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54,
12968–12972; (c) Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.;
Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2015, 54, 9944–
9947; (d) Suzuki, Y.; Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga,
S. Tetrahedron 2015, 71, 4552–4556.
(5) (a) Li, J.; Ackermann, L. Angew. Chem. Int. Ed. 2015, 54, 8551–
8554; (b) Mei, R.; Loup, J.; Ackermann, L. ACS Catal. 2016, 6,
793–797; (c) Sauermann, N.; González, M. J.; Ackermann, L. Org.
Lett. 2015, 17, 5316–5319; (d) Wang, H.; Koeller, J.; Liu, W.;
Ackermann, L. Chem. Eur. J. 2015, 21, 15525–15528.
(6) (a) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137,
490–498; (b) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17,
2400–2403.
(7) Park, J.; Chang, S. Angew. Chem. Int. Ed. 2015, 54, 14103–14107.
(8) (a) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vásquez-
Céspedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722–17725;
(b) Gensch, T.; V Vásquez-Céspedes, S.; Yu, D. G.; Glorius, F.
Org. Lett. 2015, 17, 3714–3717; (c) Zhao, D.; Kim, J. H.; Stegemann,
L.; Strassert, C. A.; Glorius, F. Angew. Chem. Int. Ed. 2015, 54,
4508–4511.
(9) (a) Guo, X.-K.; Zhang, L.-B.; Wei, D.; Niu, J.-L. Chem. Sci.
2015, 6, 7059–7071; (b) Liang, Y.; Liang, Y. F.; Tang, C.; Yuan, Y.;
Jiao, N. Chem. Eur. J. 2015, 21, 16395–16399; (c) Liu, X. G.; Zhang,
S. S.; Jiang, C. Y.; Wu, J. Q.; Li, Q.; Wang, H. Org. Lett. 2015, 17,
5404–5407; (d) Liu, X.-G.; Zhang, S.-S.; Wu, J.-Q.; Li, Q.; Wang,
H. Tetrahedron Lett. 2015, 56, 4093–4095; (e) Sen, M.; Kalsi, D.;
Sundararaju, B. Chem. Eur. J. 2015, 21, 15529–15533; (f) Zhang, Z.
Z.; Liu, B.; Wang, C. Y.; Shi, B. F. Org. Lett. 2015, 17, 4094–4097;
(g) Prakash, S.; Muralirajan, K.; Cheng, C. H. Angew. Chem. Int.
Ed. 2016, 55, 1844–1848.
Scheme 4. The kinetic isotope effect (KIE)
experiments
In summary, we have successfully developed a general
strategy to control the reaction selectivity by tuning the reac-
tivity of the organometallic intermediate, in which an earth-
abundant metal catalyst and easily available chemicals are
utilized to synthesize valuable quinolines and indoles. The
significant aspects of our work are: (1) the strategy to switch
the elusive organometallic intermediate between dehydrative
cyclization or dehydrogenative cyclization processes is
demonstrated; (2) the discovery that the cooperation of
Cp*Co(III) and Lewis acid is feasible, which can efficiently
promote dehydrative cyclization reaction; (3) the vital role of
directing groups is uncovered by density functional theory
calculations and experiments; (4) the unique activity of
Cp*Co(III) is explored in comparison to other precious tran-
sition metal catalysts, which could provide useful clues for
further novel reaction design. These results provide not only
a solution for tuning the chemical-selectivity of C–H bond
transformations, and also offer valuable information for a
better understanding of Co(III) chemistry.
ASSOCIATED CONTENT
Supporting Information.
Experimental procedure, characterization data, computa-
1
tional details and copies of H and 13C NMR spectra. This
material is available free of charge via the Internet at
ACS Paragon Plus Environment