C. A. Iriarte Capaccio, O. Varela / Carbohydrate Research 339 (2004) 1207–1213
1211
From the next fractions of the column was isolated
the epoxide 8 (9 mg, 6%) somewhat contaminated with
the more polar product; H NMR (500 MHz, CDCl3) d
6.11 (2dd, 2H, J6;7 5.6 Hz, J5;6 ꢀ J7;8 ¼ 3:0 Hz, H-6,7),
4.77, 4.44 (2d, 2H, J 11.7 Hz, PhCH2O), 4.35 (d, 1H, J3;4
1
0
6.5 Hz, H-3), 3.97 (dd, 1H, J1;1 11.9 Hz, J1;8a 5.8 Hz, H-
0
7.34 (m, 5H, H-aromatic), 4.79, 4.51 (2d, 2H, J 11.8 Hz,
PhCH2O), 4.68 (d, 1H, J3;4 3.9 Hz, H-3), 3.85 (dd, 1H,
1), 3.94 (dd, 1H, J4;4a 7.8 Hz, H-4), 3.51 (dd, 1H, J1 ;8a
4.9 Hz, H-10), 3.01, 2.82 (2br s, 2H, H-5,8), 2.75 (ddd,
1H, J4a;5 3.5 Hz, J4a;8a 10.4 Hz, H-4a), 2.59 (m, 1H,
J8;8a ꢀ 4:0 Hz, H-8a), 1.76 (br s, 1H, HO), 1.47 (br d,
0
J1;1 11.4 Hz, J1;8a 3.8 Hz, H-1), 3.53 (t, 1H, J4;4a 3.9 Hz,
H-4), 3.43 (dd, 1H, J1 ;8a 5.2Hz, H-1 0), 3.23 (br t, 1H,
0
1H, J9;9 8.2Hz, H-9), 1.34 (br d, 1H, H-9 0); 13C NMR
0
0
J6;7 ꢀ J7;8 ꢀ 4:0 Hz, H-7), 3.21 (m, 1H, H-6), 2.24 (dd,
0
1H, J8;8 15.5 Hz, J8;8a 8.2Hz, H-8), 2.18 (m, 1H, H-4a),
(50.3 MHz, CDCl3) d 137.9, 128.4, 127.9, 127.7 (C-aro-
matic), 135.8, 134.5 (C-6,7), 100.5 (C-3), 70.3 (C-4), 69.6
(PhC2O), 63.8 (C-1), 51.1 (C-9), 46.5, 44.8, 40.5, 39.4
(C-4a,5,8,8a). Anal. Calcd for C17H20O3: C, 74.97; H,
7.40. Found: C, 75.29; H, 7.07.
0
2.11 (ddd, 1H, J4a;5 8.2Hz, J5;5 15.5 Hz, J5;6 2.7 Hz, H-5),
2.05 (ddd, 1H, J4a;5 1.4 Hz, J5 ;6 6.6 Hz, H-50), 1.88 (dt,
0
0
1H, J8 ;8a ꢀ 4:0 Hz, H-80), 1.82(m, 1H, H-8a); 13C NMR
0
(50.3 MHz, CDCl3) d 137.4, 128.5, 128.0, 127.9 (C-aro-
matic), 99.6 (C-3), 71.9 (C-4), 69.5 (PhC2O), 64.3 (C-1),
52.9, 51.8 (C-6,7), 28.5, 28.1 (C-4a,8a), 25.6, 23.9
(C-5,8).
3.5. Conversion of 10 into the polycyclic alcohol 11
Upon elution of the column with mixtures of
increasing polarity of hexane–EtOAc (from 4:1 to 2:1)
the more polar product was isolated and identified as the
A solution of 10 (105 mg, 0.39 mmol, ee >86%) in CHCl3
(4 mL) was treated with a solution of m-chloroperoxy-
benzoic acid (80% purity, 150 mg, 0.70 mmol) in CHCl3
(4 mL). The mixture was stirred at room temperature for
5 min, when TLC (2:1 hexane–EtOAc) showed no
starting material (10; Rf 0.52) remaining and the for-
mation of a lower migrating product (Rf 0.29). This
compound was gradually converted into an even more
polar product (Rf 0.14), which was the major one
detected by TLC after 3 h of reaction. The mixture was
diluted with CH2Cl2, washed with satd aq NaHCO3,
dried (MgSO4), and concentrated. The product having
Rf 0.14 was isolated by flash chromatography (2.5:1
25
polycyclic alcohol 9 (34 mg, 21%, ee >86%); ½a )67.4°
D
1
(c 1.4, CHCl3); H NMR (500 MHz, CDCl3) d 7.34 (m,
5H, H-aromatic), 4.94 (br s, 1H, H-3), 4.75, 4.52(2d,
2H, J 11.8 Hz, PhCH2O), 4.13 (dd, 1H, J5 ;6 6.1 Hz, J6;7
0
0
3.2Hz, H-6), 4.06 (ddd, 1H, J7;8 7.1 Hz, J7;8 3.7 Hz, H-
0
7), 3.88 (dd, 1H, J1;1 11.2Hz, J1;8a 2.1 Hz, H-1), 3.70 (d,
1H, J4;4a 3.6 Hz, H-4), 3.27 (dd, 1H, J1 ;8a 1.8 Hz, H-10),
0
0
2.42 (m, 1H, H-4a), 2.19 (ddd, 1H, J8;8 15.0 Hz, J8;8a
0
6.0 Hz, H-8), 2.17 (d, 1H, J4a;5 < 1 Hz, J5;5 11.6 Hz, H-
0
5), 1.97 (m, 1H, H-8a), 1.75 (ddd, 1H, J4a;5 ꢀ5.5 Hz, H-
50), 1.54 (ddd, 1H, J8 ;8a 9.8 Hz, H-80); 13C NMR
hexane–EtOAc) and identified as the polycyclic alcohol
0
25
(50.3 MHz, CDCl3) d 137.7, 128.4, 128.0, 127.8 (C-aro-
matic), 95.8 (C-3), 78.6 (C-6), 76.2(C-4), 70.4 (C-7), 69.0
(PhC2O), 63.0 (C-1), 32.7 (C-4a), 29.9, 29.8 (C-5,8), 28.1
(C-8a). Anal. Calcd for C16 H20O4: C, 69.55; H, 7.29.
Found: C, 69.83; H, 7.38.
On standing at room temperature, oxirane 8 in CHCl3
solution underwent almost quantitative conversion into
the polycyclic alcohol 9. The diastereoselectivity of the
reaction, determined from the 1H NMR spectrum of the
crude mixture after complete conversion of 8 into 9,
showed a 1.9:1.0 ratio for 7:9.
11 (93 mg, 84%, ee >86%); mp 137 °C; ½a )58.3° (c 1.1,
D
CHCl3); 1H NMR (500 MHz, CDCl3+D2O) d 7.33 (br s,
5H, H-aromatic), 4.80 (d, 1H, J3;4 1.6 Hz, H-3), 4.72,
4.49 (2d, 2H, J 11.8 Hz, PhCH2O), 4.20 (br s, 1H,
0
J6;7 ꢀ 0 Hz, H-7), 4.07 (dd, 1H, J1;1 12.3 Hz, J1;8a 5.5 Hz,
H-1ax), 4.04 (d, 1H, J5;6 4.8 Hz, H-6), 3.92(dd, 1H, J4;4a
5.3 Hz, H-4), 3.72(d, 1H, J1 ;8a ꢀ 0 Hz, H-10eq), 2.82
0
(ddd, 1H, J4a;5 5.1 Hz, J5;9 1.2Hz, H-5), 2.49 (ddd, 1H,
J4a;8a 10.2Hz, H-4a), 2.12(br s, 1H, H-8), 1.92(br d, 1H,
0
J8;9 ꢀ 1:4 Hz, J9;9 10.7 Hz, H-9), 1.74 (ddd, 1H, J8;8a
3.9 Hz, H-8a), 1.38 (br d, 1H, H-90); 13C NMR
(50.3 MHz, CDCl3+D2O) d 137.4, 128.5, 127.9, 127.8
(C-aromatic), 95.3 (C-3), 88.9 (C-6), 76.4, 76.2(C-4,7),
69.1 (PhC2O), 58.2 (C-1), 48.0, 46.7 (C-5,8), 32.9, 32.7
(C-4a,8a), 31.8 (C-9). Anal. Calcd for C17H20O4: C,
70.81; H, 6.99. Found: C, 70.48; H, 6.86.
3.4. (3S,4R,4aR,5S,8R,8aS)-3-Benzyloxy-4-hydroxy-
3,4,4a,5,8,8a-hexahydro-5,8-methano-1H-2-benzopyran
(10)
The ketone group of 39 (0.55 g, 2.03 mmol, ee >86%) was
reduced with NaBH4 (95 mg, 2.51 mmol) as previously
described for the reduction of 2. After 15 min TLC (3:1
hexane–EtOAc) showed complete consumption of the
starting 3 (Rf 0.40) and formation of a more polar
product (Rf 0.23). The usual workup of the reaction
mixture followed by chromatographic purification led to
3.6. Conversion of 10 into the polycyclic iodide 12
A solution of iodine (0.12g, 0.47 mmol) in 96% EtOH
(7 mL) was added dropwise to a solution of 10 (0.10 g,
0.37 mmol, ee >86%) in 96% EtOH (7 mL). After 30 min
of stirring at room temperature, the mixture showed by
TLC (2:1 hexane–EtOAc) complete conversion of 10 (Rf
0.52) into a less polar product (Rf 0.68). The solution
was concentrated and the residue diluted with CH2Cl2.
the endo alcohol 10 (0.46 g, 83%, ee >86%) as an
25
D
amorphous solid; ½a )103.4° (c 1.1, CHCl3); 1H NMR
(500 MHz, CDCl3) d 7.32(br s, 5H, H-aromatic), 6.18,