Substitution of (S)-6-Chloronicotine and (S)-5-Chloronicotine
SHORT COMMUNICATION
Fellowship for a second-year graduate student, and Eli Lilly for the
Eli Lilly Research Fellowship for a third-year graduate student.
Table 6. Regioselective substitution at the 4-position of the pyridine
ring of (S)-5-chloronicotine (6a).
[1] a) E. D. Levin, J. Neurobiol. 2002, 53, 633; b) P. A. Newhouse,
M. Kelton, Pharm. Acta Helv. 2000, 74, 91; c) M. K. Holladay,
M. J. Dart, J. K. Lynch, J. Med. Chem. 1997, 40, 4169; d) S. R.
Breining, Curr. Top. Med. Chem. 2004, 4, 609–629.
[2] a) I. A. McDonald, J.-M. Vernier, N. D. P. Cosford, J. Corey-
Naeve, Curr. Pharm. Des. 1996, 2, 357; b) N. D. P. Cosford, L.
Bleiker, H. Dawson, J. P. Whitten, P. Adams, L. Chavez-Nori-
ega, L. D. Correa, J. H. Crona, L. S. Mahaffy, F. M. Menzaghi,
T. S. Rao, R. Reid, A. I. Sacaan, E. Santori, K. Stauderman,
K. Whelan, G. K. Lloyd, I. A. McDonald, J. Med. Chem. 1996,
39, 3235.
[3] a) L. S. King, E. Despagnet, D. L. Comins, U. S. Patent Appli-
cation No.: 10/715, 147; b) D. L. Comins, L. S. King, E. D.
Smith, F. C. Février, Org. Lett. 2005, 7, 5059–5062.
Entry[a]
Electrophile E+
Product, E
Yield[b] [%]
1
2
3
4
5
6
7
D2O
I2
MeSSMe
ethyl formate
ClSnBu3
ClSiMe2Ph
TMSCl
8a, D
8b, I
8c, SMe
8d, CHO
8e, SnBu3
8f, SiMe2Ph
8g, TMS
80
65
68
55
58
39
56
[4] a) D. L. Comins, E. Despagnet, U. S. Patent No. 6,995,265,
2006; b) E. D. Smith, F. C. Février, D. L. Comins, Org. Lett.
2006, 8, 179–182.
[a] Reactions were run on a 0.1–0.5 mmol scale. [b] Isolated yield
after radial PLC.
[5] a) D. L. Comins, F. C. Février, E. Despagnet, US Patent Appli-
cation No.: 10/926, 821; b) F. C. Février, E. D. Smith, D. L.
Comins, Org. Lett. 2005, 7, 5457–5460.
[6] a) V. Snieckus, Chem. Rev. 1990, 90, 879–933; b) C. G. Har-
tung, V. Snieckus, in: Modern Arene Chemistry (Eds.: D. As-
truc), Wiley-VCH, Weinheim, Germany, 2002, pp. 330–367; c)
P. Beak, A. Meyers, Acc. Chem. Res. 1986, 19, 356; d) F. Mar-
sais, G. Queguiner, Tetrahedron 1983, 39, 2009.
[7] For recent and classical examples of the halogen dance reac-
tion, see: a) F. Gohier, A.-S. Castanet, J. Mortier, J. Org. Chem.
2005, 70, 1501–1504; b) F. Gohier, J. Mortier, J. Org. Chem.
2003, 68, 2030–2033; c) T. Sammakia, E. L. Stangeland, M. C.
Whitcomb, Org. Lett. 2002, 4, 2385–2388; d) D. L. Comins,
J. K. Saha, J. Org. Chem. 1996, 61, 9623–9624; e) D. L. Comins,
J. K. Saha, Tetrahedron Lett. 1995, 36, 7995–7998; f) P. Rocca,
C. Cochennec, F. Marsais, L. Thomas-dit-Dumont, M. Mallet,
A. Godard, G. Quéguiner, J. Org. Chem. 1993, 58, 7832–7838;
g) E. Arzel, P. Rocca, F. Marsais, A. Godard, G. Quéguiner,
Tetrahedron 1999, 55, 12149–12156. For Reviews of Halogen
Dance Reactions, see: h) X.-F. Duan, Z.-B. Zhang, Heterocy-
cles 2005, 65, 2005–2012; i) R. Chinchilla, C. Najera, M. Yus,
Chem. Rev. 2004, 104, 2667–2722.
Conclusions
In summary, a variety of novel 2-, 4-, and 5-substituted
6-chloronicotines have been synthesized in a regioselective
manner from (S)-6-chloronicotine in moderate to high
yield. Our previous studies[3–5] and the new methodologies
described herein provide new routes to a plethora of inter-
esting and potentially useful compounds based on nicotine.
All positions on the pyridine ring of (S)-nicotine can now
be regioselectively substituted. In particular, an iodine atom
can be introduced at the 2-, 4-, or 5-positions of 6-chloroni-
cotine and at the 4-position of 5-chloronicotine providing
intermediates for sequential cross-coupling reactions.[10] Ef-
forts are underway to expand the scope of these methods
and to apply them to the preparation of potential pharma-
ceuticals, insecticides, synthetic intermediates, and novel li-
gands for catalytic asymmetric synthesis. Our goal is to
transform commercially available (S)-nicotine from an un-
derutilized natural product to a useful member of the chiral
pool.[11]
[8] a) P. Gros, Y. Fort, P. Caubère, J. Chem. Soc., Perkin Trans. 1
1997, 20, 3071–3080; b) P. Gros, Y. Fort, P. Caubère, J. Chem.
Soc., Perkin Trans. 1 1997, 24, 3597–3600; c) S. Choppin, P.
Gros, Y. Fort, Org. Lett. 2000, 2, 803–807; d) P. Gros, S. Chop-
pin, J. Mathieu, Y. Fort, J. Org. Chem. 2002, 67, 234–237.
[9] a) C. G. Hartung; V. Snieckus, in: Modern Arene Chemistry
(Eds.: D. Astruc), Wiley-VCH, Weinheim, Germany, 2002, p.
330; b) E. J. G. Anctil, V. Snieckus, J. Organomet. Chem. 2002,
653, 150; c) E. J. G. Anctil, V. Snieckus, in: Metal-Catalyzed
Cross-Couplig Reactions, 2nd ed. (Eds.: F. Diederich, A. de Me-
ijere), Wiley-VCH, Weinheim, Germany, 2004, p. 761.
[10] For cross-coupling reactions of heterocycles, see: a) J. J. Li,
G. W. Gribble, Palladium in Heterocyclic Chemistry, Pergamon,
Oxford, 2000; b) S. Schröter, C. Stock, T. Bach, Tetrahedron
2005, 61, 2245.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization, and NMR spectro-
scopic data for 3a–g, 4a–i, 5a, 5b–f, 6, 7, and 8b–g.
Acknowledgments
NMR and mass spectra were obainted at the NCSU instrumen-
tation laboratories, which were established by grants from the
North Carolina Biotechnology Center and the National Science
Foundation (Grants CHE-9121380 and CHE-9509532). F. F. W.
thanks GlaxoSmithKline for the Burroughs-Wellcome Research
[11] H.-U. Blaser, Chem. Rev. 1992, 92, 935–952.
Received: May 12, 2006
Published Online: July 3, 2006
Eur. J. Org. Chem. 2006, 3562–3565
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3565