Table 4 Thermal decompositions of 1a–b, 2a, 3a
Entry
Reactant
Solvent
t/h
Convn (%)
Prods
Yielda (%)
1
2
3
4
5
6
1a
1b
2a
3a
1a
1a
Xylene
Xylene
Xylene
Xylene
Acetonitrile + 100% CuI
Xylene + 100% CuI
12
12
12
12
12
12
86
80
76
70
6a
6b
7a
8a
6a
6a
65
72
64
54
—
63
o5
85
a
Isolated yield.
unique (Rinit = 0.0512) which was used in all calculations. Final
wR (F2) = 0.1213 (all data). CCDC 750269.
1 (a) J. E. Moses and A. D. Moorhouse, Chem. Soc. Rev., 2007, 36,
1249; (b) N. P. Gritsan and M. S. Platz, Chem. Rev., 2006, 106, 3844;
(c) S. Braese, C. Gil, K. Knepper and V. Zimmermann, Angew.
Chem., Int. Ed., 2005, 44, 5188; (d) E. F. V. Scriven and K. Turnbull,
Chem. Rev., 1988, 88, 297.
2 (a) N. P. Gritsan and E. A. Pritchina, Russ. Chem. Rev., 1992, 61,
500; (b) G. B. Schuster and M. S. Platz, Adv. Photochem., 1992, 69;
(c) P. A. S. Smith, in Azides and Nitrenes, Reactivity and Utility,
Academic, New York, 1984, 95..
3 D. S. Breslow, in Azides and Nitrenes, Reactivity and Utility,
Academic, New York, 1984, pp. 491.
4 (a) H. Bayley and J. Staros in Azides and Nitrenes, Reactivity and
Utility, Academic, New York, 1984, pp. 434; (b) H. Bayley,
Photogenerated Reagents in Biochemistry and Molecular Biology,
Elsevier, New York, 1983.
Scheme 2
Two mechanisms are possible for the transformation of
3-(2-azidobenzylidene)lactams into fused indoles under two
different conditions (Scheme 2). Photolytic and thermal
reactions are believed to occur via nitrene I attacking onto
the b-position of the adjacent double bond to form a zwitter-
ion II5f and subsequently the shift of the acyl group to the
carbocation. The tautomerization of intermediate III
affords 6a. Similar to that proposed for metal-catalyzed
decomposition of azides,6 the Cu(I)-catalyzed photoreaction
can be assumed to proceed via initial coordination of Cu(I) to
the azide (in acetonitrile) to provide complex IV. Photolysis of
IV expels N2 to directly produce the electrophilic Cu-nitrene
intermediate V. Following a similar route as for I to 6a, V can
be also transformed to 6a in higher efficiency.
5 (a) G. C. Condie, M. F. Channon, A. J. Ivory, N. Kumar and
D. StC. Black, Tetrahedron, 2005, 61, 4989; (b) P. M. Fresneda,
P. J. Molina and A. Bleda, Tetrahedron, 2001, 57, 2355;
(c) E. T. Pelkey and G. W. Gribble, Tetrahedron Lett., 1997, 38,
5603; (d) P. M. Fresneda, P. Molina and S. M. Angeles Saez, Synlett,
1999, 1651; (e) P. Kaszynski and D. A. Dougherty, J. Org. Chem.,
1993, 58, 5209; (f) P. A. S. Smith, C. D. Rowe and D. W. Hansen,
Tetrahedron Lett., 1983, 24, 5169; (g) L. Garanti and G. Zecchi,
J. Org. Chem., 1980, 45, 4767; (h) R. S. Gairns, C. J. Moody and
C. W. Rees, J. Chem. Soc., Perkin Trans. 1, 1986, 501.
6 (a) Y. Naruta, N. Nagai, Y. Arita and K. Maruyama, J. Org.
Chem., 1987, 52, 3956; (b) K. S. Feldman, D. K. II Hester,
C. S. Lopez and O. Nieto Faza, Org. Lett., 2008, 10, 1665;
(c) K. S. Feldman, D. K. II Hester, M. R. Iyer, P. J. Munson,
C. S. Lopez and O. N. Faza, J. Org. Chem., 2009, 74, 4958;
(d) K. Sun, R. Sachwani, K. J. Richert and T. G. Driver, Org.
Lett., 2009, 11, 3598; (e) H. Dong, M. Shen, J. E. Redford,
B. J. Stokes, A. L. Pumphrey and T. G. Driver, Org. Lett., 2007,
9, 5191.
7 (a) P. G. Baraldi, M. A. Tabrizi, D. Preti, A. Bovero, F. Fruttarolo,
R. Romagnoli, N. A. Zaid, A. R. Moorman, K. Varani and
P. A. Borea, J. Med. Chem., 2005, 48, 5001; (b) B. Baruah,
K. Dasu, B. Vaitilingam, A. Vanguri, S. R. Casturi and
K. R. Yeleswarapu, Bioorg. Med. Chem. Lett., 2004, 14, 445;
(c) Y. L. Chen, C. H. Chung, I. L. Chen, P. H. Chen and
H. Y. Jeng, Bioorg.Med. Chem., 2002, 10, 2705; (d) N. Chi Hung,
E. Bisagni, F. Lavelle, M. C. Bissery and C. II. Huel, Anti-Cancer
Drug Des., 1992, 7, 219; (e) G. Palazzino, L. Cecchi, F. Melani,
V. Colotta, G. Filacchioni, C. Martini and A. Lucacchini, J. Med.
Chem., 1987, 30, 1737.
In conclusion, we have developed an efficient method for the
synthesis of fused indoles such as indolo[3,2-c]quinolin-6-ones,
pyrido[4,3-b]indol-1-ones, pyridazino[4,5-b]indol-1-ones, dihydro-
indolo[3,2-d][2]benzazepin-5,7-dione and [1,3]diazepino[5,6-b]-
indole-1,3,5-trione by either direct photolysis or CuI-catalyzed
photoreaction or thermolysis in refluxing xylene of five series
of 3-(2-azidobenzylidene)lactams.
We thank the National Natural Science Foundation of
China (20472027) for financial support.
8 (a) L. Zhou and M. P. Doyle, J. Org. Chem., 2009, 74, 9222;
(b) S. C. Lu, W. Zhang, J. Pan and J. Zhang, Synthesis, 2008,
1517; (c) A. K. Ganguly, C. H. Wang, T. M. Chan, Y. H. Ing and
A. V. Buevich, Tetrahedron Lett., 2004, 45, 883; (d) J. Bergman,
R. Engqvist, C. Stalhandske and H. Wallberg, Tetrahedron, 2003,
59, 1033; (e) P. M. Fresneda, P. Molina and S. Delgado, Tetra-
hedron, 2001, 57, 6197.
Notes and references
z Crystal data: for compound 7b (recrystallized from acetone-hexane).
C21H16N2O3, M = 344.36, monoclinic, a = 10.1086(18) A, b =
12.6741(18) A, c = 14.238(2) A, b = 106.962(11), V = 1744.8(5) A3,
yellow plates, r = 1.311 g cmꢀ3, T = 296(2) K, space group P2 (1)/c,
Z = 4, m (MoK mmꢀ1, 2ymax = 51.72, 2866 reflection collected, 1957
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3973–3975 | 3975