2126
C. Reddy, S. A. Babu
Letter
Synlett
Davies, I. R.; Cheeseman, M.; Taylor, J. E.; Kociok-Köhn, G.; Bull,
S. D. Org. Lett. 2011, 13, 3592. (o) Davies, S. G.; Nicholson, R. L.;
Smith, A. D. Org. Biomol. Chem. 2004, 2, 3385. (p) Ošlaj, M.;
Cluzeau, J.; Orkić, D.; Kopitar, G.; Mrak, P.; Časar, Z. PLoS One
2013, 8, e62250. (q) Vajdič, T.; Ošlaj, M.; Kopitar, G.; Mrak, P.
Metab. Eng. 2014, 24, 160.
obtained free of charge from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax:
+44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site:
(9) γ-Lactones 3s–u and δ-Lactones 3a–r and 4a–h; General Pro-
cedure
(6) For selected papers on the synthesis of γ-lactones: for metal-
based synthesis, see: (a) Mladenova, M.; Gaudemar-Bardone, F.;
Goasdoue, N.; Gaudemar, M. Synthesis 1986, 937.
(b) Gaudemar-Bardone, F.; Gaudemar, M.; Mladenova, M. Syn-
thesis 1987, 1130. (c) Babu, S. A.; Yasuda, M.; Okabe, Y.; Shibata,
I.; Baba, A. Org. Lett. 2006, 8, 3029 and references cited therein.
(d) Habel, A.; Boland, W. Org. Biomol. Chem. 2008, 6, 1601.
(e) Fillion, E.; Carret, S.; Mercier, L. G.; Trépanier, V. É. Org. Lett.
2008, 10, 437. (f) Rollin, Y.; Derien, S.; Duñach, E.; Gebehenne,
C.; Perichon, J. Tetrahedron 1993, 49, 7723. (g) Pisani, L.;
Superchi, S.; D’Elia, A.; Scafato, P.; Rosini, C. Tetrahedron 2012,
68, 5779. For the dihydroxylation route, see: (h) Kapferer, T.;
Brückner, R. Eur. J. Org. Chem. 2006, 2119. For a C–H abstrac-
tion-based protocol, see: (i) Dohi, T.; Takenaga, N.; Goto, A.;
Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129. For TfOH-based
construction of γ-lactones, see: (j) Elford, T. G.; Arimura, Y.; Yu,
S. H.; Hall, D. G. J. Org. Chem. 2007, 72, 1276. (k) Aslam, N. A.;
Babu, S. A. Tetrahedron 2014, 70, 6402. For a reduction/lacton-
ization sequence-based method, see: (l) Steward, K. M.; Gentry,
E. C.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 7329.
(7) For selected papers and reviews on Barbier-type reactions, see:
(a) Barbier, P. C. R. Hebd. Seances Acad. Sci. 1899, 128, 110.
(b) Roush, R. W. In Comprehensive Organic Synthesis; Vol. 2;
Trost, B. M.; Fleming, I.; Heathcock, C. H., Eds.; Pergamon:
Oxford, 1991, 1. (c) Chemler, S. R.; Roush, W. R. In Modern Car-
bonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000,
Chap. 11, 403. (d) Denmark, S. E.; Almstead, N. G. In Modern
Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000,
Chap. 10 299. (e) Nair, V.; Ros, S.; Jayan, C. N.; Pillai, B. S. Tetra-
hedron 2004, 60, 1959. (f) Takao, K.-i.; Miyashita, T.; Akiyama,
N.; Kurisu, T.; Tsunoda, K.; Tadano, K.-i. Heterocycles 2012, 86,
147. (g) Gao, Y. Z.; Wang, X.; Sun, L. D.; Xie, L. G.; Xu, X. H. Org.
Biomol. Chem. 2012, 10, 3991. (h) Lim, J. W.; Kim, K. H.; Park, B.
R.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6545. (i) Reddy, C.;
Babu, S. A.; Aslam, N. A. RSC Adv. 2014, 4, 40199; and references
cited therein. See also Ref. 6 (a).
Zn powder (0.37 mmol) and allylbromide or 3-bromocyclohex-
ene (0.5 mmol) were added to a solution of the appropriate
malonate substrate 1 (0.25 mmol) in anhyd THF (1.5 mL) under
N2, and the mixture was stirred at 30–35 °C for the appropriate
time (see Table 1 and Schemes 2–4). The reaction was then
quenched by adding H2O (2 mL), and the mixture was allowed
to stand. The mixture was transferred to a separatory funnel
and extracted with EtOAc (3 × 8 mL), and the organic layers
were combined, dried (Na2SO4), filtered, and concentrated
under vacuum. The resulting crude product was purified by
column chromatography (silica gel, EtOAc–hexane).
Ethyl (3S*,4S*,6S*)-6-Allyl-4-(4-chlorophenyl)-2-oxo-6-phen-
yltetrahydro-2H-pyran-3-carboxylate (3b)
Prepared by the general procedure from 1b, and purified by
column chromatography [silica gel, EtOAc–hexanes (13: 87)] as
a colorless solid (major isomer); yield: 97 mg (98%; dr 75:25);
mp 87–89 °C. IR (KBr): 1747, 1726, 1494 and 1155 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 7.41–7.28 (m, 5 H), 7.32 (d, J = 8.4 Hz,
2 H), 7.13 (d, J = 8.4 Hz, 2 H), 5.66–5.56 (m, 1 H), 5.16–5.11 (m,
2 H), 4.16–4.10 (m, 2 H), 3.81 (td, J1 = 12.2 Hz, J2 = 4.7 Hz, 1 H),
3.54 (d, J = 12.2 Hz, 1 H), 2.92 (dd, J1 = 14.2 Hz, J2 = 6.7 Hz, 1 H),
2.84 (dd, J1 = 14.2 Hz, 1 H, J2 = 7.6 Hz), 2.67 (dd, J1 = 14.3 Hz,
J2 = 4.7 Hz, 1 H), 2.29 (dd, J1 = 14.3 Hz, J2 = 12.2 Hz, 1 H), 1.14 (t,
J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.9, 166.9,
143.2, 138.8, 133.6, 131.4, 131.4, 129.2, 128.7, 128.4, 128.0,
124.6, 120.0, 86.1, 61.8, 54.2, 47.0, 39.3, 38.3, 14.0. HRMS (ESI):
m/z [M
421.1174.
+
Na]+ calcd for C23H23ClNaO4: 421.1183; found:
(10) (a) This observation implies the stereoselection might occur at
the Barbier reaction step through a plausible chelation effect
involving the malonate moiety. This possibility is based on the
observation that reaction in polar protic solvents such as EtOH
gave no selectivity (Compare entries 1 and 3 in Table 1).
(b) There was no significant change in the diastereoselectivity
with respect to the two diastereomers obtained from reactions
performed for different times. Furthermore, the diastereoselec-
tivity of the crude reaction mixture did not differ significantly
from that of the pure mixture of diastereomers obtained after
isolation by column chromatography on silica gel.
(8) Crystallographic data for compounds 3b, 3c, 3t, and 4b have
been deposited with the accession numbers CCDC 1048540,
1048541, 1048542, and 1048543, respectively, and can be
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2121–2126