3346 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 21
Ta ble 4. Pharmacokinetic Profile of the Title Compound (1)
Letters
(2) Pomerantz, R. J . Primary HIV-1 Resistance. J . Am. Med. Assoc.
1999, 282, 1177-1179.
(3) (a) Hunt, S. W., III; LaRosa, G. J . Chemokine receptors as HIV
co-receptors: targets for therapeutic intervention in AIDS. Annu.
Rep. Med. Chem. 1998, 33, 263-272. (b) Blair, W. S.; Meanwell,
N. A.; Wallace, O. B. HIV-1 entry: an expanding portal for drug
discovery. Drug Discovery Today 2000, 5, 183-194.
iv administrationa
oral administrationb
d
c
d
species
AUC0-24h
T1/2 (h) Cmax
AUC0-24h
BA (%)e
doge
3240
2610
6
4
690
1420
6290
15400
65e
59e
monkeye
(4) (a) Patchett, A. A.; Nargund, R. P. Privileged structures: an
update. Annu. Rep. Med. Chem. 2000, 35, 289-298. (b) Murphy,
P. M. Viral exploitation and subversion of the immune system
through chemokine mimicry. Nature Immun. 2001, 2, 116-122.
(5) (a) Shiraishi, M.; Aramaki, Y.; Imoto, H.; Nishikawa, Y.; Kan-
zaki, N.; Okamoto, M.; Sawada, H.; Nishimura, O.; Baba, M.;
Fujino, M. Discovery of novel, potent, and selective small-
molecule CCR5 antagonists as anti-HIV-1 agents: Synthesis and
biological evaluation of anilide derivatives with a quarternary
ammonium moiety. J . Med. Chem. 2000, 43, 2049-2063. (b)
Hale, J . J .; Budhu, R. J .; Mills, S. G.; MacCoss, M.; Malkowitz,
L.; Siciliano, S.; Gould, S. L.; DeMartino, J . A.; Springer, M. S.
1,3,4-Trisubstituted pyrrolidine CCR5 Antagonists. Part 1:
Discovery of the pyrrolidine scaffold and determination of its
stereochemical requirements. Bioorg. Med. Chem. Lett. 2001, 11,
1437-1440.
(6) A preliminary account of this work has been presented: Tagat,
J .; Nazareno, D.; Vice, S.; Lin, S.; Steensma, R.; Miller, M.;
Bauer, A.; McCombie, S.; Palani. A.; J osien, H.; Clader, J .;
Neustadt, B.; Greenlee. W.; Ganguly, A.; Piwinski, J .; Chan, T.
M.; Evans, A.; Dan, N.; Baroudy, B.; Endres, M.; Strizki, J .;
Vantuno, N.; Cox, K.; Broske, L.; Zhang, X. Discovery of potent,
orally bioavailable CCR5 antagonists-1. Abstracts of Papers,
221st National Meeting of the American Chemical Society, San
Diego, CA, April 1-5, 2001; American Chemical Society: Wash-
ington, DC, 2001; MEDI 26.
a
b
Intravenous (iv) dose ) 1 mg/kg. Oral dose ) 3 mg/kg (dog)
c
d
or 10 mg/kg (monkey). Cmax is in ng/mL. AUC is in ng/mL h.
e Bioavailability (BA) is dose-corrected.
following oral administration. The major route of excre-
tion is through the urine in rats and through the bile
in dogs and in monkeys. The major metabolite arises
via oxidative cleavage of the CH3CHCH2 region of the
chiral piperazine. The reduction of the N-oxide (1) back
to the nicotinamide 18 was not observed.
Compound 1 shows 30-50-fold selectivity for CCR5
over the M1 (Ki ) 350 nM) and the M2 (Ki ) 250 nM)
muscarinic receptors. It has no appreciable affinity for
other related receptors of current interest.17 There is
neither inhibition nor induction of the liver enzymes
with this compound. In the PBMC based assay, com-
pound 1 inhibited the replication of HIV-1 isolates with
IC50 values in the 2-20 nM range.15 Importantly,
compounds 1 and 18 also bind to primate CCR5,
suggesting the possibility of evaluation in primate-based
models of the disease.
In conclusion, truncation of the original piperidino-
2(S)-methyl piperazine lead structure 2 gave compound
8 with reduced molecular weight and improved selectiv-
ity for the HIV co-receptor CCR5 over the muscarinic
M2 receptor. Optimization of this pharmacophore for
pharmacokinetic properties afforded the title compound
(1), a prototypical piperazine-based CCR5 antagonist,
which is a potent inhibitor of HIV-1 entry and replica-
tion and has excellent oral bioavailability in rat, dog,
and monkey. Starting with potent muscarinic antago-
nists with weak affinity for CCR5,7 we have designed
structure 1, which is a potent, orally absorbed CCR5
antagonist with modest affinity for the muscarinic M2
receptor. The further improvement of such structures
toward greater selectivity for CCR5 will be reported in
due course.
(7) Tagat, J . R.; McCombie, S. W.; Steensma, R. W.; Lin, S.-I.;
Nazareno, D. V.; Baroudy, B.; Vantuno, N.; Xu, S.; Liu, J .
Piperazine-based CCR5 antagonists as HIV-1 Inhibitors. I: 2(S)-
methyl piperazine as a key pharmacophore element. Bioorg.
Med. Chem. Lett. 2001, 11, 2143-2146.
(8) CCR5-RANTES binding assay: see ref 7. Muscarinic receptor
binding assay: Kozlowski, J . A.; Lowe. D. B.; Guzik, H. S.; Zhou,
G.; Ruperto, V. B.; Duffy, R. A.; McQuade, R.; Crosby, G.; Taylor,
L. A.; Billard, W.; Lachowicz, J . E. Diphenyl sulfoxides as
selective antagonists of the muscarinic M2 receptor. Bioorg. Med.
Chem. Lett. 2000, 10, 2255-2257.
(9) For details of RANTES binding, HIV-1 entry, and replication
assays, see the Supporting Information.
(10) Cox, K. A.; Dunn-Meynell, K.; Korfmacher, W. A.; Broske, L.;
Nomeir, A. A.; Lin, C. C.; Cayen, M. N.; Barr, W. H. A novel in
vivo procedure for rapid pharmacokinetic screening of discovery
compounds in rat. Drug Discovery Today, 1999, 4 (5), 232-237.
(11) The conversion of 7 to targets bearing diverse para-substituents
will be published elsewhere.
(12) (a) Corey, E. J .; Bakshi, R. K.; Shibata, S. Highly enantioselective
borane reductions of ketones catalyzed by chiral oxaborolidines.
J . Am. Chem. Soc. 1987, 109, 5551-5553. (b) J ones, T. K.;
Mohan, J . J .; Xavier, L. C.; Blacklock, T. J .; Mathre, D. J .; Sohar,
P.; Turner-J ones, E. T.; Reamer, R. A.; Roberts, F. E.; Grabowski,
E. J . J . An asymmetric synthesis of MK-0417. Observations on
oxaborolidine-catalyzed reductions. J . Org. Chem. 1991, 56,
763-769.
(13) Polniaszek, R. P.; Belmont, S. E. Enantioselective Total Syn-
thesis of Indolizidine Alkaloids 167B and 209D. J . Org. Chem.
1990, 55, 4688-4693.
(14) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C.
A.; Shah, R. D. Reductive amination of aldehydes and ketones
with sodium triacetoxyborohydride. Studies on direct and indi-
rect reductive amination procedures. J . Org. Chem. 1996, 61,
3849-3862.
Ack n ow led gm en t. We thank Dr. J ean Lachowicz
(CNS Pharmacology) for the muscarinic antagonist data
and the physical and analytical chemistry department
for spectral and analytical data of our compounds. Drs.
Anandan Palani, J ohn Clader, and William Greenlee
are thanked for many helpful discussions. We are
grateful to Drs. Ashit Ganguly, J ohn Piwinski, and
Gregory Reyes for their strong support of this project.
(15) Primary HIV-1 isolates included: US-1, 92US715, BAL, ASM57,
J RFL, J rCSF, QZ4589, 302056, SF162, DJ 258, 92RW026,
94ZW103, CM235, and BZ162. The cytotoxicity (CC50) of 1 and
18 is >40 µM in PBMC cultures using MTS cell titer 96 protocol.
(16) Studies of the physicochemical phenomenon of rotamers will be
reported in due course.
(17) Compounds 1 and 18 (1-5 µM) show 0-20% binding at CCR1-
3, CCR7, NK1-3, CB1-2, H1, H3, NPY, D1-2, A2a, nociceptin,
opioid, and thrombin receptors.
Su p p or tin g In for m a tion Ava ila ble: Description of an-
tiviral assays and experimental procedures and spectral data
for the preparation and characterization of compounds 1, 8,
and 18. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(1) UNAIDS. Report on the Global HIV/ AIDS Epidemic; XIII
International AIDS Conference, Durban, South Africa, 2000.
J M0155401