August 2002
1139
Fig. 3. Mass Spectrum of the Product of the Reaction of (H4, D4)-KRP-197 with the TPPMnCl-PhIO System
13C-NMR spectra.
References and Notes
1) Sono M., Roach M.P., Coulter E. D., Dawson J. H., Chem. Rev., 96,
2841—2887 (1996).
2) Nagatsu Y., Higuchi T., Hirobe M., Chem. Pharm. Bull., 37, 1410—
1412 (1989).
3) Carganico G., Cozzi P., Il Farmaco, 46, 209—231 (1991).
4) Midgley I., Biggs S. R., Hawkins D. R., Chasseaud L. F., Darragh A.,
Brodie R. R., Walmsley L. M., Xenobiotica, 11, 595—608 (1981).
5) Ostrowski J., Schraven E., Keil M., Arzneim-Forsch./Drug. Res., 26,
218—225 (1976).
6) Graham D. J. M., Hama K. M., Smith S. A., Kurz L., Chaplin M. D.,
Hall D. J., Drug. Metab. Dispos, 15, 565—570 (1987).
7) Yano K., Kozano H., Numata H., Esumi Y., Mitsugi K., Ooyama T.,
Watanabe I., Wada R., Yatabe N., Ueda T., Sugai S., Xenobiot.
Metabol. Dispos, 6, 535—552 (1991).
8) Yamagami S., Kawasaki E., Egawa A., Xenobiot. Metabol. Dispos, 8,
1129—1146 (1993).
9) Ohta K., Akimoto M., Kohno Y., Fukushima K., Suwa T., Awazu S.,
Biol. Pharm. Bull., 21, 308—310 (1998).
10) Santa T., Mori T., Hirobe M., Chem. Pharm. Bull., 33, 2175—2178
(1985).
11) Masumoto H., Takeuchi K., Ohta S., Hirobe M., Chem. Pharm. Bull.,
37, 1788—1794 (1985).
12) Nagatsu Y., Higuchi T., Hirobe M., Chem. Pharm. Bull., 38, 400—403
(1990).
13) Miyachi H., Kiyota H., Segawa M., Bioorg. Med. Chem. Lett., 8,
1807—1812 (1998).
14) Miyachi H., Kiyota H., Segawa M., Bioorg. Med. Chem. Lett., 8,
2163—2168 (1998).
15) Miyachi H., Kiyota H., Uchiki H., Segawa M., Bioorg. Med. Chem., 7,
1151—1161 (1999).
In this paper, we have shown that 2-methylimidazole and a
derivative of it were oxidized effectively with a chemical
model system for cytochrome P-450, TPPMnCl–PhIO, to af-
ford the 2-methylimidazolone mono-oxidation product. The
reaction system is superior to the previously described cupro-
ascorbate system in respect of reproducibility and yield of
the product. The formation of 2-methylimidazolone from 2-
methylimidazole was reported to occur through a cytochrome
P450-independent pathway,24) but this suggestion was based
on very limited findings. Considering our present results and
a report showing that simple imidazole was oxidized through
a P-450-dependent pathway to afford hydantoin and hydan-
toic acid,24) we consider that the metabolic pathway to 2-
methylimidazolone from 2-methylimidazole is at least partly
P-450-dependent. Further study is under way.
Interestingly, various imidazoles, such as imidazole, 2-
methylimidazole, N-methylimidazole and so on, have been
used as ligands for metalloporphyrins in order to enhance the
reactivity of the catalyst and/or to increase the yield of the
product.25—27) However, there is little information about the
fate of the added imidazoles during the oxidation reaction,
although they were used in excess molar amounts as com-
pared to the metalloporphyrin catalyst.28) Our present results
indicate that in certain cases, not only the substrate itself, but
also the added imidazole might be oxidized, affording both
the desired product and the oxidized imidazole.
16) Miyachi H., Kiyota H., Segawa M., Bioorg. Med. Chem. Lett., 9,
3003—3008 (1999).
17) Cook B. R., Reinert T. J., Suslick K. S., J. Am. Chem. Soc., 108,
7281—7286 (1986).
Conclusion
18) Atkinson J. K., Hollenberg P. F., Ingold K. U., Johnson C. C., Cathy C.,
Le Tadic M. H., Newcomb M., Putt D. A., Biochemistry, 33, 10630—
10637 (1994).
We showed that a chemical model system for cytochrome
P-450 could oxidize 2-methylimidazole to 2-methylimida-
zolone. A 2-methylimidazole-containing drug was similarly
mono-oxidized to afford a putative precursor of the main
metabolites. The efficiency of the reaction was superior to
that of a reported method using a copper-ascorbate system.
Further application of this chemical model system for in
vitro metabolic studies of various drugs and/or drug candi-
dates containing a heterocyclic structure is in progress.
19) 1H-NMR (400 MHz, CDCl3) d 1.99 (3H, s), 3.90 (2H, s), 10.76 (1H,
br s). FAB-MS m/z: 98.0505 (Calcd for C4H6N2O: 98.0480).
20) (Z)-5-Benzylidene-2-methyl-3,5-dihydro-imidazol-4-one; mp. 171.0—
1
171.5 °C. H-NMR (400 MHz, CDCl3) d 2.39 (3H, s), 7.08 (1H, s),
7.37—7.46 (3H, m), 8.13 (2H, dd, Jϭ8.3, 1.7 Hz), 8.82 (1H, br s).
FAB-MS m/z: 186.0772 (Calcd for C11H10N2O: 186.0793). Anal.
Calcd for C11H10N2O: C, 70.95; H, 5.41; N, 15.04. Found: C, 70.89; H,
5.38; N, 14.99.
21) The metabolic study of KRP-197 will be published elsewhere.
22) 1H-NMR (400 MHz, CDCl3) d 2.14 (3H, t, Jϭ2.0 Hz), 2.61—2.65
(2H, m), 3.44—3.47 (2H, m), 3.99 (2H, d, Jϭ2.0 Hz), 5.51 (1H, br s),
5.57 (1H, br s), 7.30—7.40 (10H, m). 13C-NMR (100 MHz, CDCl3) d
15.71, 37.77, 38.41, 58.23, 58.92, 128.44—128.80, 142.26, 163.57,
176.24, 181.42. FAB-MS m/z: 336.1728 (Calcd for C20H22N3O2:
336.1712), 340.1977 (Calcd for C20H18D4N3O2: 340.1963).
Acknowledgments The authors wish to thank to Professor Tsunehiko
Higuchi, Faculty of Pharmaceutical Sciences, Nagoya City University, for
fruitful discussions. Thanks are also due to H. Saito and H. Furuta of Kyorin
Pharmaceutical Co., Ltd., for their analytical work.