Paper
Catalysis Science & Technology
10 °C min−1 temperature ramp to 180 °C with a hold time of
35 min and a flow rate of 3.5 ml min−1.
2005, 39, 3374; (b) M. J. García-Martínez, I. D. Riva, L.
Canoira, J. F. Llamas, R. Alcántara and J. L. R. Gallego, Appl.
Catal., B, 2006, 67, 279; (c) F. Rivas, J. Hazard. Mater.,
2006, 138, 234; (d) E. Ferrarese, G. Andreottola and I. A.
Oprea, J. Hazard. Mater., 2008, 152, 128.
The method used for the substituted naphthalenes
consisted of an initial isotherm period at 40 °C for 3 min
followed by a 3 °C min−1 temperature ramp to 120 °C with a
hold time of 12 min and a flow rate of 1.3 ml min−1.
The retention times for the main products detected for
each substrate are detailed below:
- Substrate 1: tr1 = 2.03 min, tr1a = 1.83 min, tr1b = 1.58
min, tr1c = 1.41 min.
- Substrate 2: tr2 = 14.91 min, tr2a = 14.22 min, tr2b =
13.15 min, tr2c = 10.73 min, tr2d = 12.76 min, tr2e = 8.37
min.
- Substrate 3: tr3 = 14.72 min, tr3a = 13.04 min, tr3b =
14.31 min, tr3c = 13.71 min.
- Substrate 4: tr4 = 46.46 min, tr4a = 44.62 min, tr4b =
41.16 min, tr4c = 36.74 min, tr4d = 20.58 min, tr4e = 21.90
min.
- Substrate 5: tr5 = 22.80 min, tr5a = 20.80 min, tr5b =
18.27 min.
- Substrate 6: tr6 = 5.56 min, tr6a = 4.91 min, tr6b = 3.68
min, tr6c = 3.02 min.
4 (a) K. J. Klabunde and R. M. Richards, in Nanoscale
Materials in Chemistry, Wiley-Interscience, New York, 2001;
(b) G. Schmid, in Clusters and Colloids. From Theory to
Applications, Wiley VCH, Weinheim, 2004; (c) G. Schmid, in
Nanoparticles. From Theory to Application, Wiley VCH,
Weinheim, 2004; (d) K. J. Klabunde and C. Mohs, in
Chemistry of Advanced Materials. An Overview, Wiley-VHC,
New York, 1998; (e) A. Roucoux, Top. Organomet. Chem.,
2005, 16, 261.
5 A. Gual, C. Godard, S. Castillón and C. Claver, Dalton Trans.,
2010, 39, 11499.
6 (a) K. Philippot and B. Chaudret, C. R. Chim., 2003, 6, 1019;
(b) P. J. Debouttière, V. Martinez, K. Philippot and B.
Chaudret, Dalton Trans., 2009, 10172; (c) M. Guerrero, J.
García-Antón, M. Tristany, J. Pons, J. Ros, K. Philippot, P.
Lecante and B. Chaudret, Langmuir, 2010, 26, 15532; (d)
M. R. Axet, K. Philippot, B. Chaudret, M. Cabi, S. Giorgio
and C. R. Henry, Small, 2011, 7, 235; (e) P. Lara, O. Rivada-
Wheelaghan, S. Conejero, R. Poteau, K. Philippot and B.
Chaudret, Angew. Chem., 2011, 123, 12286 (Angew. Chem.,
Int. Ed., 2011, 50, 12080).
- Substrate 7: tr7 = 27.39 min, tr7a = 25.96 min, tr7b =
23.70 min, tr7c = 20.51 min.
- Substrate 9: tr9 = 5.46 min, tr9a = 4.55 min, tr9b = 3.39
min, tr9c = 2.90 min.
- Substrate 10: tr10 = 2.11 min, tr10a = 2.04 min, tr10b =
1.96 min, tr10c = 1.86 min.
7 P. Lara, K. Philippot and B. Chaudret, ChemCatChem,
2013, 5, 28.
- Substrate 11: tr11 = 7.94 min, tr11a = 6.41 min.
- Substrate 12: tr12a = 11.56 min, tr12b = 10.79 min, tr12c
= 9.21 min.
- Substrate 13: tr13 = 14.06 min, tr13a = 12.55 min, tr13b =
13.61 min.
8 A. Stanislaus and B. H. Cooper, Catal. Rev.: Sci. Eng.,
1994, 36, 75.
9 J. A. Widegren and R. G. Finke, J. Mol. Catal. A: Chem.,
2003, 102, 187.
10 T. Huang and B. Kang, Chem. Eng. J., 1996, 63, 27.
11 R. R. Deshmukh, J. W. Lee, U. S. Shin, J. Y. Lee and C. E.
Song, Angew. Chem., Int. Ed., 2008, 47, 8615.
12 H. Gao and R. J. Angelici, J. Am. Chem. Soc., 1997, 119,
6937.
Acknowledgements
We are grateful to the Spanish Ministerio de Economía y
Competitividad (CTQ-2011-22872) for financial support. EB
thanks Ministerio de Educación Cultura y Deporte for a grant.
We also thank Serveis de Recursos Científics (URV) for their
support. BC thanks INSA, CNRS.
The authors also acknowledge financial support from
CNRS and the European Union for ERC Advanced Grant
(NANOSONWINGS 2009-246763).
13 T. He, Y. Wang, P. Miao, J. Li, J. Wua and Y. Fang, Fuel,
2013, 106, 365.
14 (a) R. C. Larock, in Comprehensive Organic Transformations,
Wiley, New York, 1999, pp. 6–7, and references cited therein;
(b) Q. Lin, K. Shimizu and A. Satsuma, Appl. Catal., A,
2010, 387, 166; (c) A. F. Borowski, L. Vendier, S. Sabo-Etienne,
E. Rozycka-Sokolowsk and A. V. Gaudyn, Dalton Trans.,
2012, 41, 14117.
15 S. C. Korre, M. T. Klein and R. J. Quann, Ind. Eng. Chem.
Res., 1995, 34, 101.
Notes and references
1 S. M. Bamforth and I. Singleton, J. Chem. Technol.
Biotechnol., 2005, 80(723), 3523.
16 R. Abu-Reziq, D. Avnir, I. Miloslavski, H. Schumann and J.
Blum, J. Mol. Catal. A: Chem., 2002, 185, 179.
2 IARC, Benzo[α]pyrene, Polynuclear Aromatic Compounds, Part
1, Chemical, Environmental and Experimental Data,
Monographs on the Evaluation of the Carcinogenic Risk of
Chemicals to Humans, 1983, vol. 32, International Agency for
Research on Cancer, Lyon, pp. 211–224.
17 N. A. Beckers, S. Huynh, X. Zhang, E. J. Luber and J. M.
Buriak, ACS Catal., 2012, 2, 1524.
18 M. Ohde, H. Ohde and C. M. Wai, Chem. Commun.,
2002, 2388.
19 (a) M. J. Jacinto, O. H. C. F. Santos, R. Landers, P. Kiyohara
and L. M. Rossi, Appl. Catal., B, 2009, 90, 688; (b) J. Deng,
W. Shih and C. Mou, ChemPhysChem, 2005, 6, 2021; (c) J.
3 (a) B. Pawelec, J. M. Campos-Martin, E. Cano-Serrano, R. M.
Navarro, S. Thomas and J. L. G. Fierro, Environ. Sci. Technol.,
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2015