M. Rofoo et al. / Tetrahedron Letters 42 (2001) 2481–2484
2483
Scheme 4.
diastereoisomer of 2a. When a methyl group was fixed
on the carbonꢀcarbon double bond a mixture of two di-
astereoisomers was obtained (entries f, g) whose stereo-
chemistries were not determined. However, we can con-
clude from these results, that the formation of oxetanes
occurred by intervention of a bromonium (vinylsilanes
1a–e), or a carbocation (vinylsilanes 1f–h) depending of
the substitution of the carbonꢀcarbon double bond.
With the secondary alcohol 1d, we could expect that the
cyclisation was also diastereospecific. In fact we
obtained a mixture of two isomers, due to the low facial
diastereoselection induced by the cyclohexyl group. The
stereochemistry of these two diastereomers was deter-
mined by a NOESY experiment. In the case of alcohol
1h, we isolated only two diastereoisomers, instead of
the four possible, whose stereochemistries were not
established.
Rheingold, A. L.; Concolino, T. Tetrahedron Lett. 1999,
40, 7051–7053.
7. (a) Miura, K.; Hondo, T.; Saito, H.; Ito, H.; Hosomi, A.
J. Org. Chem. 1997, 62, 8292–8293 and references cited
therein; (b) Adiwidjaja, G.; Floerke, H.; Kirschning, A.;
Schaumann, E. Liebigs Ann. Org. Bioorg. Chem. 1995,
501–508; (c) Fragale, G.; Wirth, T. Eur. J. Org. Chem.
1998, 1361–1369.
8. Miura, K.; Hondo, T.; Nakagawa, T.; Takahashi, T.;
Hosomi, A. Org. Lett. 2000, 2, 385–388.
9. Ehlinger, E.; Magnus, P. J. Am. Chem. Soc. 1980, 102,
5004–5011.
10. Semeyn, C.; Blaauw, R. H.; Hiemstra, H.; Speckamp, W.
H. J. Org. Chem. 1997, 62, 3426–3427.
11. Marko´, I. E.; Bayston, D. J. Tetrahedron 1994, 50, 7141–
7156.
12. Compain, P.; Gore´, J.; Vate`le, J.-M. Tetrahedron 1996,
52, 10405–10416.
We examined also the reactivity of bis(col-
lidine)iodine(I) hexafluoroantimonate with the vinylsi-
lane 1b. We obtained the oxetane 3 in 35% yield
(Scheme 4). This reagent appears thus less interesting
that the bromo reagent for the preparation of oxetanes.
13. This reagent was prepared in two steps (70% overall
yield) by reaction of silver hexafluoroantimonate with
collidine in water, followed by reaction of the silver salt
with bromine as reported for the preparation of the
hexafluorophosphate salt. See: Homsi, F.; Robin, S.;
Rousseau, G. Org. Synth. 2000, 77, 206–211.
14. Representative procedure: To a solution of alcohol (2
mmol) in methylene chloride (10 mL) heated at reflux was
added over 6 h a methylene chloride solution (40 mL) of
bis(collidine)bromine(I) hexafluoroantimonate (5 mmol).
After complexion of the addition and cooling, the solvent
was removed under vacuum and the residue purified by
liquid chromatography over silica gel (hexanes–ether).
In conclusion, we report that formation of oxetanes by
4-exo electrophilic cyclisation of homoallylic alcohols
using bis(collidine)bromine hexafluoroantimonate is an
efficient process, if a silicon atom is fixed in terminal
position on the carbonꢀcarbon double bond. These
cyclisations are diastereospecific when the carbon of the
double bond in b of the silicon atom is non substituted.
1
15. Selected data: Oxetane 2a: H NMR (CDCl3, 250 MHz)
l 4.72 (q, J=8 Hz, 1H), 3.38 (d, J=10 Hz, 1H), 2.35 (dd,
J=6 and 11 Hz, 1H), 2.08 (dd, J=6 and 11 Hz, 1H),
2.00–1.20 (m, 10H). Oxetane 2b: H NMR 4.75 (q, J=7
References
1
Hz, 1H), 3.45 (d, J=7 Hz, 1H), 2.42–2.20 (m, 2H),
2.00–1.00 (m, 10H). 13C NMR 81.7, 74.7, 47.5, 39.1, 38.2,
37.9, 25.1, 22.8, 22.2, −2.3. Oxetane 2c: 1H NMR 4.65 (q,
J=7 Hz, 1H), 3.40 (d, J=8 Hz, 1H), 2.45–2.20 (m, 2H),
1.80–1.10 (m, 8H), 1.05–0.80 (m, 6H), 0.15 (s, 9H). 13C
NMR 83.7, 76.4, 47.1, 42.3, 41.0, 37.5, 29.7, 16.6, 16.4,
14.5, −2.3. Oxetane 2d (major diastereomer): 1H NMR
4.75 (d, J=7 Hz, 1H), 4.26 (q, J=7 Hz, 1H), 3.35 (d,
J=8 Hz, 1H), 2.75–2.55 (m, 1H), 2.35–2.15 (m, 1H),
2.00–1.05 (m, 11H), 0.15 (s, 9H). 13C NMR 81.3, 77.3,
46.8, 44.5, 32.4, 27.7, 26.4, 26.0, 25.5, 25.3, −2.3. Oxetane
2d (minor diastereomer): 1H NMR 4.83–4.72 (m, 1H),
4.32 (q, J=7 Hz, 1H), 3.55 (d, J=5 Hz, 1H), 2.70–2.55
(m, 1H), 2.45–2.28 (m, 1H), 1.80–1.05 (m, 11H), 0.15 (s,
1. Albert, S.; Robin, S.; Rousseau, G. Tetrahedron Lett.
2001, 42, 2477–2479.
2. Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976,
734–736.
3. Bew, S. P.; Barks, J. M.; Knight, D. W.; Middleton, R. J.
Tetrahedron Lett. 2000, 41, 4447–4451 and references
cited therein.
4. (a) Evans, R. D.; Magee, J. W.; Schauble, J. H. Synthesis
1988, 862–868; (b) Galatsis, P.; Millan, S. D.; Nechala,
P.; Ferguson, G. J. Org. Chem. 1994, 59, 6643–6651; (c)
Jung, M. E.; Nichols, C. J. Tetrahedron Lett. 1996, 37,
7667–7670.
5. (a) Brown, W. L.; Fallis, A. G. Can. J. Chem. 1987, 65,
1828–1832; (b) Arjona, O.; de la Pradilla, R. F.; Plumet,
J.; Viso, A. J. Org. Chem. 1992, 57, 772–774; (c)
Paquette, L. A.; Edmondson, S. D.; Monck, N.; Rogers,
R. D. J. Org. Chem. 1999, 64, 3255–3265.
6. (a) Galatsis, P.; Millan, S. D.; Ferguson, G. J. Org.
Chem. 1997, 62, 5048–5056 and references cited therein;
(b) Wang, G.; Wang, Y.; Arcari, J. T.; Howell, A. R.;
1
9H). Oxetane 2e: H NMR 4.78 (q, J=8 Hz, 1H), 3.62
(d, J=8 Hz, 1H), 2.40–2.15 (m, 2H), 2.00–1.10 (m, 10H),
0.95 (s, 9H), 0.15 (s, 3H), 0.05 (s, 3H). 13C NMR 81.4,
74.7, 46.0, 38.6, 38.2, 37.5, 27.0, 25.2, 22.9, 22.3, 17.3,
−5.4, −6.5. Oxetane 2f (major diastereomer): 1H NMR
3.81 (s, 1H), 2.25 (d, J=9 Hz, 1H), 2.08 (d, J=9 Hz,