Published on Web 10/04/2006
Fabrication of Steady Junctions Consisting of
r,ω-Bis(thioacetate) Oligo(p-phenylene vinylene)s in Nanogap
Electrodes
Tien-Tzu Liang,†,‡,§ Yasuhisa Naitoh,*,†,‡ Masayo Horikawa,†,‡ Takao Ishida,†,‡ and
Wataru Mizutani†
Contribution from the Nanotechnology Research Institute, National Institute of AdVanced
Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan, and
Synthetic Nano-Function Materials Project, National Institute of AdVanced Industrial Science
and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
Received April 12, 2006; E-mail: ys-naitou@aist.go.jp
Abstract: For obtaining molecular devices using metal-molecule-metal junctions, it is necessary to
fabricate a steady conductive bridge-structure; that is stable chemical bonds need to be established from
a single conductive molecule to two facing electrodes. In the present paper, we show that the steadiness
of a conductive bridge-structure depends on the molecular structure of the bridge molecule for nanogap
junctions using three types of modified oligo(phenylene vinylene)s (OPVs): R,ω-bis(thioacetate) oligo-
(phenylene vinylene) (OPV1), R,ω-bis(methylthioacetate) oligo(phenylene vinylene) (OPV2), and OPV2
consisting of ethoxy side chains (OPV3). We examined the change in resistance between the molecule-
bridged junction and a bare junction in each of the experimental Au-OPV-Au junctions to confirm whether
molecules formed steady bridges. Herein, the outcomes of whether molecules formed steady bridges were
defined in terms of three types of result; successful, possible and failure. We define the ratio of the number
of successful junctions to the total number of experimental junctions as successful rate. A 60% successful
rate for OPV3 was higher than for the other two molecules whose successful rates were estimated to be
∼10%. We propose that conjugated molecules consisting of methylthioacetate termini and short alkoxy
side chains are well suited for fabricating a steady conductive bridge-structure between two facing electrodes.
nylene) (OPE),5-9,12-17 oligo(phenylene) (OP),18,19 and oligo-
(thiophene) (OT),20-22 have been reported. Since the OPV
Introduction
For the realization of molecular devices with metal-molecule-
metal junctions containing functional molecules, a number of
studies have been conducted previous to this study.1-4 In
particular, studies on potential ‘‘molecular nanowires” based
on dithiol terminated π-conjugated oligomers is proceeding at
a rapid pace. Typical Au-nanowire-Au junctions formed with
oligo(phenylene vinylene) (OPV),5-11 oligo(phenylene ethy-
backbone consists of a higher degree of planarity, and thus better
π-conjugation, than those for OPE or the other molecules,9,23-24
Au-OPV-Au junctions always show higher electronic con-
ductance than other conjugated oligomers.5-9 For example,
Blum et al. showed that the resistance of a cross-wire tunneling
(11) Azehara, H.; Liang, T.-T.; Ishida, T.; Naitoh, Y.; Mizutani, W. Jpn. J. Appl.
Phys. 2004, 43, 4511
(12) Blum, A. S.; Kushmerick, J. G.; Long, D. P.; Patterson, C. H.; Yang, J.
C.; Henderson, J. C.; Yao, Y.; Tour, J. M.; Shashidhar, R.; Ratna, B. R.
Nat. Mat. 2005, 4, 167.
† Nanotechnology Research Institute.
‡ Synthetic Nano-Function Materials Project.
(13) Selzer, Y.; Cabassi, M. A.; Mayer, T. S.; Allara, D. L. J. Am. Chem. Soc.
2004, 126, 4052.
§ Present address: Yokohama Oil & Fats Industry Co., Ltd., 1-1,
Minamisenngenncho, Nishiku, Yokohama, 220-0074, Japan.
(1) Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29, 277.
(2) Joachim, C.; Gimzewski, J. K.; Aviram, A. Nature 2000, 408, 541.
(3) Nitzan, A.; Ratner, M. A. Science 2003, 300, 1384.
(4) Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V. B.; Frisbie,
C. D. AdV. Mater. 2003, 15, 1881.
(14) Reichert, J.; Weber, H. B.; Mayor, M.; Lo¨hneysen, H. v. Appl. Phys. Lett.
2003, 82, 4137.
(15) Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.;
Shashidhar, R. Phys. ReV. Lett. 2002, 89, 086802.
(16) Reichert, J.; Ochs, R.; Beckmann, D.; Weber, H. B.; Mayor, M.; Lo¨hneysen,
H. v. Phys. ReV. Lett. 2002, 88, 176804.
(5) Long, D. P.; Patterson, C. H.; Moore, M. H.; Seferos, D. S.; Bazan, G. C.;
Kushmerick, J. G. Appl. Phys. Lett. 2005, 86, 153105.
(6) Blum, A. S.; Kushmerick, J. G.; Pollack, S. K.; Yang, J. C.; Moore, M.;
Naciri, J.; Shashidhar, R.; Ratna, B. R. J. Phys. Chem. B 2004, 108, 18124.
(7) Cai, L. T.; Skulason, H.; Kushmerick, J. G.; Pollack, S. K.; Naciri, J.;
Shashidhar, R.; Allara, D. L.; Mallouk, T. E.; Mayer, T. S. J. Phys. Chem.
B 2004, 108, 2827.
(17) Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. Appl. Phys. Lett.
2002, 80, 2761.
(18) Dadosh, T.; Gordin, Y.; Krahne, R.; Khivrich, I.; Mahalu, D.; Frydman,
V.; Sperling, J.; Yacoby, A.; Bar-Joseph, I. Nature 2005, 436, 677.
(19) Samanta, M. P.; Tian, W.; Datta, S.; Henderson, J. I.; Kubiak, C. P. Phys.
ReV. B 1996, 53, R7626.
(20) Zhitenev, N. B.; Erbe, A.; Bao, Z. Phys. ReV. Lett. 2004, 92, 186805.
(21) Zhitenev, N. B.; Meng, H.; Bao, Z. Phys. ReV Lett. 2002, 88, 226801.
(22) Kergueris, C.; Bourgoin, J.-P.; Palacin, S.; Esteve, D.; Urbina, C.; Magoga,
M.; Joachim, C. Phys. ReV. B 1999, 59, 12505.
(8) Blum, A. S.; Yang, J. C.; Shashidhar, R.; Ratna, B. R. Appl. Phys. Lett.
2003, 82, 3322.
(9) Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.;
Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R. J. Am. Chem. Soc.
2002, 124, 10654.
(23) Liang, T.-T.; Azehara, H.; Ishida, T.; Mizutani, W.; Tokumoto, H. Synth.
Met. 2004, 140, 139.
(10) Naitoh, Y.; Liang, T.-T.; Azehara, H.; Mizutani, W. Jpn. J. Appl. Phys.
2005, 44, L472.
(24) Seferos, D. S.; Banach, D. A.; Alcantar, N. A.; Israelachvili, J. N.; Bazan,
G. C. J. Org. Chem. 2004, 69, 1110.
9
13720
J. AM. CHEM. SOC. 2006, 128, 13720-13726
10.1021/ja062561h CCC: $33.50 © 2006 American Chemical Society