Organic Letters
Letter
Optimization data, experimental procedures, character-
ization of new compounds, and spectral data (PDF)
Scheme 4. Control Experiments
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financed by the Agency for Innovation by Science
and Technology (IWT-Flanders), the University of Antwerp
(BOF), and the Hercules Foundation. We thank Heidi Seykens
(Organic Synthesis, University of Antwerp) for HRMS measure-
ments.
REFERENCES
■
(1) (a) Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem.
Soc. Rev. 2012, 41, 3790. (b) Czernecki, S.; Valer
́
y, J.-M. J. Carbohydr.
Chem. 1990, 9, 767. (c) Imada, Y.; Yuasa, M.; Nakamura, I.; Murahashi,
S.-I. J. Org. Chem. 1994, 59, 2282. (d) Castro, B.; Selve, C. Bull. Soc.
Chim. Fr. 1971, 4368. (e) Hennion, G. F.; Hanzel, R. S. J. Am. Chem. Soc.
1960, 82, 4908. (f) Kopka, I. E.; Fataftah, A.; Rathke, M. W. J. Org. Chem.
1980, 45, 4616.
(2) (a) Yu, P. H.; Davis, B. A.; Boulton, A. A. J. Med. Chem. 1992, 35,
3705. (b) Tsai, S.-C.; Yuan, R.-Y. J. Exp. Clin. Med. 2012, 4, 209.
(c) Jiang, B.; Si, Y. G. Angew. Chem., Int. Ed. 2004, 43, 216.
(3) (a) Chen, J.; Properzi, R.; Uccello, D. P.; Young, J. A.; Dushin, R.
G.; Starr, J. T. Org. Lett. 2014, 16, 4146. (b) Nilsson, B. M.; Hacksell, U.
J. Heterocycl. Chem. 1989, 26, 269. (c) Ranjan, A.; Yerande, R.;
Wakchaure, P. B.; Yerande, S. G.; Dethe, D. H. Org. Lett. 2014, 16, 5788.
(4) Dyatkin, A. B.; Rivero, R. A. Tetrahedron Lett. 1998, 39, 3647.
(5) Pereshivko, O. P.; Peshkov, V. A.; Van der Eycken, E. V. Org. Lett.
2010, 12, 2638.
(6) Cheng, M.; Zhang, Q.; Hu, X.-Y.; Li, B.-G.; Ji, J.-X.; Chan, A. S. C.
Adv. Synth. Catal. 2011, 353, 1274.
(7) Pierce, C. J.; Nguyen, M.; Larsen, C. H. Angew. Chem., Int. Ed. 2012,
51, 12289.
(8) Tang, X.; Kuang, J.; Ma, S. Chem. Commun. 2013, 49, 8976.
(9) Cai, Y.; Tang, X.; Ma, S. Chem. - Eur. J. 2016, 22, 2266.
(10) (a) Albaladejo, M. J.; Alonso, F.; Moglie, Y.; Yus, M. Eur. J. Org.
Chem. 2012, 3093. (b) Hosseini-Sarvari, M.; Moeini, F. New J. Chem.
2014, 38, 624. (c) Nemati, F.; Elhampour, A.; Farrokhi, H.; Bagheri
Natanzi, M. Catal. Commun. 2015, 66, 15. (d) Chinna Rajesh, U.; Gulati,
U.; Rawat, D. S. ACS Sustainable Chem. Eng. 2016, 4, 3409.
(e) Perumgani, P. C.; Keesara, S.; Parvathaneni, S.; Mandapati, R. M.
New J. Chem. 2016, 40, 5113.
reacted with n-propylamine and phenylacetylene, besides some
imine 8, no alkynylated product was formed (Scheme 4, route b).
When dipropylamine was used instead of n-propylamine in
combination with nonchlorinated ketone, hydroamination of
phenylacetylene, followed by alkynylation of the intermediate
formed iminium occurred, as described by Larsen et al. (Scheme
4, route c).18a,b However, no incorporation of the ketone
component was seen. This proves that both the primary amine
and the presence of the ω-chlorine atom on the ketone are
necessary for the coupling reaction. Next, ω-chloroimine 10 was
synthesized19 and reacted with phenylacetylene at 90 °C in the
presence of 0.25 equiv of Cu2O and 1 equiv of NEt3. The
corresponding 2-alkynylpiperidine 4aj was isolated in 33% yield,
proving that the proposed reaction mechanism in Scheme 2 is
plausible. Alkynylation reactions of enamines have been reported
to proceed via the corresponding iminium compounds, thus
supporting the proposed reaction mechanism.20 Preliminary
alkylation of the primary amine by the alkyl chloride moiety of 1,
followed by intramolecular iminium formation is more plausible,
since 5-aminopentan-2-one 11 (as its ammonium salt), which
was prepared independently (see the SI) upon reaction with
phenylacetylene, 1 equiv of propylamine and 0.25 equiv of Cu2O
furnished the alkynylpiperidine 4a in 70% yield already at rt after
2 h.
In conclusion, a new, mild Cu(I)-catalyzed synthesis of 2-
alkynylpyrrolidines and -piperidines bearing a quaternary α-
carbon center was reported. Different primary aliphatic amines
can be used in combination with ω-chlorinated ketones. A broad
range of functional groups (Cl, MeO, CF3, NO2, NH2, NMe2) is
well tolerated on the alkyne moiety. Different substituted
aromatic ketones, which traditionally are difficult reaction
partners, could be coupled. Moreover, this synthesis uses simple,
cheap, and commercially available starting materials. The key
step is the in situ generation of a cyclic ketiminium species, which
has an enhanced reactivity toward alkynylation in comparison to
acyclic ketiminium species.
(11) Kushwaha, K.; Malakar, C. C.; Stas, S.; Lemier
Tehrani, K. RSC Adv. 2015, 5, 10139.
̀
e, F.; Abbaspour
(12) (a) Han, J.; Xu, B.; Hammond, G. B. J. Am. Chem. Soc. 2010, 132,
916. (b) Liu, X. Y.; Che, C. M. Angew. Chem., Int. Ed. 2008, 47, 3805.
(13) Malakar, C. C.; Maes, B. U. W.; Abbaspour Tehrani, K. Adv. Synth.
Catal. 2012, 354, 3461.
(14) Buckley, B. R.; Khan, A. N.; Heaney, H. Chem. - Eur. J. 2012, 18,
3855.
(15) Sharma, N.; Sharma, U. K.; Mishra, N. M.; Van der Eycken, E. V.
Adv. Synth. Catal. 2014, 356, 1029.
(16) Takada, H.; Kumagai, N.; Shibasaki, M. Org. Lett. 2015, 17, 4762.
(17) Roman, B. I.; De Kimpe, N.; Stevens, C. V. Chem. Rev. 2010, 110,
5914.
(18) (a) Palchak, Z. L.; Lussier, D. J.; Pierce, C. J.; Yoo, H.; Larsen, C.
H. Adv. Synth. Catal. 2015, 357, 539. (b) Nelson, K.; Larsen, C. H.
Synlett 2014, 25, 2681.
(19) Sulmon, P.; De Kimpe, N.; Schamp, N. Synthesis 1989, 8.
(20) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2002,
41, 2535.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
D
Org. Lett. XXXX, XXX, XXX−XXX