New Applications of Dithiocarbamates in Organic Synthesis 571
group transfer are driven in the desired direction
(Fig. 2). The intermediate 6b in the group transfer
process will fragment to carbamoyl radical 1 and
lactam 7b, the major driving force being the relative
stability of 1 compared with the primary alkyl
radical 2.
REFERENCES
[1] Zard, S. Z. In Radicals in Organic Synthesis; Re-
naud, P.; Sibi, S. (Eds.); Wiley-VCH: Weinheim, 2001;
Vol. 1, Ch. 1.6.
[2] Motherwell, W. A.; Imboden, C. In Radicals in Or-
ganic Synthesis; Renaud, P.; Sibi, S. (Eds.); Wiley-
VCH: Weinheim, 2001; Vol. 1, Ch. 1.7.
The dithiocarbamate group transfer cyclization
of carbamoyl radicals has proven to be a relatively
general approach to functionalized lactams of vari-
ous ring sizes (Fig. 4) [11]. After cyclization, dithio-
carbamate group transfer to secondary (Eqs. (2), (3),
(5), and (6)) and tertiary (Eq. (4)) radicals can also
be achieved; although in the latter case yields are
lower, presumably due to a slower addition step from
the more hindered tertiary radical and less favor-
able equilibria during dithiocarbamate group trans-
fer. Running the reaction at a higher concentration
led to a slightly higher yield in this case. Formation
of a bicyclic ring system through two consecutive
5-exo trig cyclizations and dithiocarbamate group
transfer is also possible (Eq. (7)).
In conclusion, the dithiocarbamate group has
been shown to be an efficient mediator of carbamoyl
radical cyclization reactions, complementing the
radical chemistry of xanthates. The procedure is ex-
perimentally simple, requiring neither high dilution
nor syringe pump techniques, and avoids the use of
toxic tin reagents characteristic of a large number of
free-radical processes. The products of these reac-
tions themselves contain a dithiocarbamate, which
can be used for further functional group manipula-
tion. It is hoped this methodology will find applica-
tion in the synthesis of new heterocyclic ring systems
of biological interest, including natural products.
[3] Zard, S. Z.; Quiclet-Sire, B. Chem Eur J 2006, 12,
6002–6016.
[4] Rigby, J. H.; Danca, D. M.; Horner, J. H. Tetrahedron
Lett 1998, 39, 8413–8416.
[5] Bella, A. F.; Jackson, L. V.; Walton, J. C. Org Biomol
Chem 2004, 2, 421.
[6] Scanlan, E. M.; Slawin, A. M. Z.; Walton, J. C. Org
Biomol Chem 2004, 2, 716–724.
[7] Benati, L.; Bencivenni, G.; Leardini, R.; Minozzi, M.;
Nanni, D.; Scialpi, R.; Spagnolo, P.; Zanardi, G. J Org
Chem 2006, 71, 3192–3197.
[8] Gill, G. B.; Pattenden, G.; Reynolds, S. J. J Chem Soc,
Perkin Trans 1 1994, 369–378.
[9] Reynolds, S. J.; Pattenden, G. J Chem Soc, Perkin
Trans 1 1994, 379–385.
[10] Zard, S. Z. Angew Chem, Int Ed 1997, 36, 672–
685.
[11] Grainger, R. S.; Innocenti, P. Angew Chem, Int Ed
2004, 43, 3445–3448.
[12] Moad, G.; Rizzardo, E.; Thang, S. H. Aust J Chem
2005, 58, 379–410.
[13] Yanagawa, M.; Moriya, O.; Watanabe, Y.; Ueno, Y.;
Endo, T. Bull Chem Soc Jpn 1988, 61, 2203–2204.
[14] Bouhadir, G.; Legrand, N.; Quiclet-Zire, B.; Zard,
S. Z. Tetrahedron Lett 1999, 40, 277–280.
[15] Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.;
Moad, G.; Rizzardo, E. Tetrahedron Lett 1999, 40,
2435–2438.
[16] Harakat, D.; Pesch, J.; Marinkovic, S.; Hoffmann, N.
Org Biomol Chem 2006, 4, 1202–1205.
[17] Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad,
G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang,
S. H. Macromolecules 2003, 36, 2273–2283.
Heteroatom Chemistry DOI 10.1002/hc