1321
THERMODYNAMIC CHARACTERISTICS
REFERENCES
ꢀ
ꢀ
The increase in heat capacity
=
1. A. Gupta, R. K. Sharma, R. Bohra, et al., Polyhedron
116 J/(K mol) of the substance under study upon
fusion was found graphically by extrapolating the norꢀ
21, 2387 (2002).
2. V. V. Sharutin, O. K. Sharutina, O. V. Molokova, et al.,
Zh. Obshch. Khim. 71, 1317 (2001) [Russ. J. Gen.
Chem. 71, 1243 (2001)].
3. V. V. Sharutin, O. K. Sharutina, O. V. Molokova, et al.,
Zh. Obshch. Khim. 70, 1990 (2000) [Russ. J. Gen.
Chem. 70, 1872 (2000)].
4. V. A. Dodonov, A. V. Gushchin, D. A. Gor’kaev, et al.,
Izv. Akad. Nauk, Ser. Khim., No. 6, 965 (2002).
5. I. B. Rabinovich, V. P. Nistratov, V. I. Tel’noi, et al.,
Thermodynamics of MetalꢀOrganic Compounds (Nizheꢀ
gor. Gos. Univ., Nizh. Novgorod, 1996) [in Russian].
°
mal path of Cp versus
T
to the temperature of phase
fus. Using the thermodynamic characterisꢀ
tics of fusion for , we calculated the first
(K–1) and
the second
(K–1) cryoscopic constants according to
the following equations:
°
T
transition
I
A
B
2
ꢀ
ꢀ
(5)
(6)
A = ΔfusH /[R(Tfus)
] = 0.0268 0.0003,
o
ꢀ
ΔCp (Tfus)
−1
1
2
ꢀ
B = (Tfus)
−
= 0.00092 0.00003,
ꢀ
6. N. N. Smirnova, I. A. Letyanina, V. N. Larina, et al.,
H
J. Chem. Thermodyn. 41, 46 (2009).
where
R
is a universal gas constant.
7. N. N. Smirnova, I. A. Letyanina, A. V. Markin, et al.,
Zh. Obshch. Khim. 79, 553 (2009) [Russ. J. Gen.
Chem. 79, 717 (2009)].
Standard Thermodynamic Functions
8. I. A. Letyanina, N. N. Smirnova, A. V. Markin, et al.,
J. Therm. Anal. Cal. 103, 355 (2011).
To calculate the standard thermodynamic funcꢀ
tions (Table 3), the temperature dependence of the
heat capacity of I was extrapolated from 6.5 to 0 K by
the Debye function of the heat capacity of solids:
9. V. V. Sharutin, O. K. Sharutina, O. V. Molokova, et al.,
Koord. Khim. 28, 497 (2002) [Russ. J. Coord. Chem.
28, 464 (2002)].
10. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorꢀ
kin, J. Chem. Thermodyn. 29, 623 (1997).
11. V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, et al., Prib.
°
Cp
=
nD(ΘD/Т),
(7)
Tekh. Eksp. 6, 195 (1985).
where D is the Debye function of heat capacity,
is the number of degrees of freedom, and ΘD = 63.7 K
is the Debye intrinsic temperature. Equation (7)
describes the experimental values of heat capacity Cp
n
= 6
12. G. W. H. Hohne, W. F. Hemminger, and H. F. Flamꢀ
mersheim, Differential Scanning Calorimetry (Springer,
Berlin; Heidelberg, 2003).
°
13. V. A. Drebushchak, J. Therm. Anal. Cal. 79, 213
(2005).
with these parameters in the range of 6.5–12 K with an
error of 1.4%. We accepted that in the range of 0–6.5 K, 14. Atomic Weights of the Elements 1993, IUPAC Commisꢀ
sion on Atomic Weights and Isotopic Abundance’s
J. Phys. Chem. Ref. Data 24, 1561 (1995).
,
Eq. (7) reproduces the heat capacity values with the
same degree of error.
15. Physics and Chemistry of The Organic Solid State, Ed. by
D. Fox, M. Labes, and A. Weissberger (Interscience,
New York London, 1965; Mir, Moscow, 1968).
CONCLUSIONS
16. D. Stull, E. Westrum, and G. Sinke, Chemical Thermoꢀ
dynamics of Organic Compounds (Wiley, New York,
1969; Mir, Moscow, 1971).
The procedure for calculating enthalpy
(0), entropy , and Gibbs function
H
°
(
(
T
) –
H°
S°
(T)
G°
T) –
H
°
(0) was described in detail, e.g., in [21, 22]. The
17. T. S. Yakubov, Dokl. Akad. Nauk SSSR 310, 145
error of the calculated function values assumed a value
of 2% at < 15 K, 0.6% in the range of 15 to 40 K,
and 2.5% in the range of 370 to 463 K.
(1990).
Т
18. V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, et al.,
Thermochim. Acta 269–270, 109 (1995).
19. V. V. Tarasov, Zh. Fiz. Khim. 24, 111 (1950).
Using the value of absolute entropy of I (Table 3)
and simple substances (carbon [23], hydrogen [24],
oxygen [25], nitrogen [25], and antimony [25]), we
calculated the standard entropy of formation of crystal I
20. V. V. Tarasov and G. A. Yunitskii, Zh. Fiz. Khim. 39
,
2077 (1965).
21. B. V. Lebedev, Thermochim. Acta 297, 143 (1997).
ΔfS° = –1935.5 1.9 J/(K mol) at T = 298.15 K. The
obtained value corresponds to the following equation:
22. J. P. McCullough and D. W. Scott, Calorimetry of Nonꢀ
Reacting Systems (Butterworth, London, 1968).
23. Codata Key Values for Thermodynamics, Ed. by J. D. Cox,
D. D. Wagman, and V. A. Medvedev (New York, 1984).
24. M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monoꢀ
34С(gr) +
15.5H2(g) +
Sb(cr) +
O2(g) +
N2(g)
(8)
graph 9, 1951 (1998).
where the physical states of reagents are indicated in
parentheses: gr is graphite, g is gas, and cr is crystalꢀ
line.
25. Thermal Constants of Materials. Handbook, Ed. by
V. P. Glushko (VINITI, Moscow, 1965–1981), Nos. 1–
10 [in Russian].
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A
Vol. 85
No. 8 2011