I. Tommasi, F. Sorrentino / Tetrahedron Letters 50 (2009) 104–107
107
18. For acetone is reported pKa = 20: Cram, D. J. In Fundamentals of Carbanion
Chemistry; Academic Press: New York, 1965; pp 8–20; and pKa = 26.5
Matthews, W. S.; Bares, J. E.; Bartness, J. E.; Bordwell, F. G., et al. J. Am. Chem.
Soc. 1975, 97, 7006–7014. For benzylcyanide is reported pKa = 21.9: Bordwell,
F. G.; Bares, J. E.; Bartmess, J. E.; McCollum, G. J.; Van Der Puy, M.; Vanier, N. R.;
Matthews, W. S. J. Org. Chem. 1977, 42, 321–325.
solvents behaving essentially as weak Lewis acids (Stanley, R. H.; Beauchamp, J.
L. J. Am. Chem. Soc. 1975, 97, 5920–5921; Wieting, R. D.; Stanley, R. H.;
Beauchamp, J. L. J. Am. Chem. Soc. 1975, 97, 924–926). At the same time the
metal cation could shift the equilibrium toward the products by stabilizing the
carboxylate or carbonate anions. The precipitation of the salts may also drive
the reaction to the products.
19. (a) Owen, O. E.; Morgan, A. P.; Kemp, H. G.; Sullivan, J. M.; Herrera, M. G.; Cahill,
G. F. J. Clin. Invest. 1967, 46, 1589–1595; (b) Hiraide, A.; Dohi, S.; Suzuki, M.;
Shiba, Y. EP 1 188 437 A2, 2002; Chem. Abstr. 127, 104350.; (c) Frank, A.;
Kraushaar, A.; Margreiter, H.; Schunk, R. U.S. Patent 3,432,490, 1969; Chem.
Abstr. 1965, 62, 29464.; (d) Kis-Tamàs, A.; Jurak, F.; Vig, Z.; Kekete, P.; Kulcsar, J.
U.S. Patent 4,740,228, 1988; Chem. Abstr. 1982, 96, 64205.
20. (a) Levine, R.; Hauser, C. R. J. Chem. Soc. 1944, 66, 1768–1770; (b) Patmore, E. L.;
Siegart, W. R.; Chafetz, H. U.S. Patent 3,692,826, 1972; Chem. Abstr. 1973, 78,
4011.
27. Synthesis of a-alkylidene cyclic carbonates: In a case experiment: 0.79 mmol of
1,3-dialkylimidazolium-2-carboxylate and 10.3 mmol of the propargyl alcohol
were placed, under nitrogen atmosphere, into a glass reactor of a magnetically
stirred stainless steal autoclave and added with 4 mL of dry CH3CN. After
closing the autoclave, it was pressurized by CO2, and the mixture was heated to
100 °C for 15 h under continuous stirring (PCO = 60 bar). The reaction was then
stopped by cooling and depressurizing the au2toclave, and the reaction mixture
was analyzed via GC. The products were isolated by silica gel column
chromatography. Carbonates 12a–d are known compounds. Spectroscopic
data for products were in agreement with those reported in the literature:
Joumier, J. M.; Fournier, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Perkin Trans.
1 1991, 3271–3274.
21. (a) Bottaccio, G.; Chiusoli, G. P.; Alneri, E.; Marchi, M.; Lana, G. U.S. Patent
4,032,555, 1977; Chem. Abstr. 1977, 86, 5180.; (b) Bottaccio, G.; Chiusoli, G. P.;
Felicioli, M. G.; Tosi, E. Gazz. Chim. Ital. 1976, 106, 831–841; (c) Abe, H.; Inoue, S.
J. Chem. Soc., Chem. Commun. 1994, 1197–1198; (d) Kunert, M.; Brauer, M.;
Klobes, O.; Gorls, H.; Dinjus, E.; Anders, E. Eur. J. Inorg. Chem. 2000, 1803–1809;
(e) Patmore, E. L. U.S. Patent 3,694,496, 1972; Chem. Abstr. 1973, 78, 28618.; (f)
Mori, H. Bull. Chem. Soc. Jpn. 1988, 61, 435–439; (g) Chiba, K.; Tagaya, H.;
Karasu, M.; Ono, T.; Hashimoto, K.; Moriwaki, Y. Bull. Chem. Soc. Jpn. 1991, 64,
966–970; (h) Chiba, K.; Tagaya, H.; Karasu, M.; Ishizuka, M.; Toshiyuki, S. Bull.
Chem. Soc. Jpn. 1994, 67, 452–454; (i) Bottaccio, G.; Marchi, M.; Chiusoli, G. P.
Gazz. Chim. Ital. 1977, 107, 499–500; (j) Bottaccio, G.; Chiusoli, G. P.; Coassolo,
A.; Carletti, V. U.S. Patent 3, 798,266, 1974; Chem. Abstr. 1973, 78, 158946.
22. Carboxylation of acetone. In a Schlenk flask, 1-butyl, 3-methylimidazolium-2-
carboxylate (3.38 g, 18.5 mmol), dry NaI (2.78 g (18.5 mmol) dry acetone
(25 mL), and CH3CN (10 mL) were reacted, under nitrogen atmosphere at room
temperature for 70 h. The initially clear solution after a few hours became
cloudy with copious white precipitate and a light yellow supernatant. The
reaction mixture was then dried in vacuo, and the residual solid washed with
CH3CN (2 ꢂ 20 mL) and dry acetone (2 ꢂ 20 mL). The white solid obtained
(1.78 g, 77.3%) was characterized as sodium salt of the 3-oxo-butanoic acid.
Anal. Calcd for C4H5NaO3: Na, 18.53. Found: Na, 18.32. IR (Nujol, KBr): 1712,
28. (a) Iritani, K.; Yanagihara, N.; Utimoto, K. J. Org. Chem. 1986, 51, 5499–5501; (b)
Joumier, J. M.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc., Perkin Trans. 1 1993,
1749–1751; (c) Ohe, K.; Matsuda, H.; Morimoto, T.; Ogoshi, S.; Chatani, N.;
Murai, S. J. Am. Chem. Soc. 1994, 116, 4125–4126; (d) Toullec, P.; Martin, A. C.;
Gio-Batta, M.; Bruneau, C.; Dixneuf, P. H. Tetrahedron Lett. 2000, 41, 5527–
5531; (e) Masahiro, Y.; Masataka, I. Angew. Chem., Int. Ed. 2001, 40, 616–619.
29. Uemura, K.; Kawaguchi, T.; Takayama, H.; Nakamura, A.; Inoue, T. J. Mol. Catal.
A: Chem. 1999, 139, 1–9.
30. Sasaki, Y. Tetrahedron Lett. 1986, 27, 1573–1574.
31. Inoue, Y.; Ishikawa, J.; Taniguchi, M.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1987,
60, 1204–1206.
32. (a) Laas, H.; Nissen, A.; Nurrenbach, A. Synthesis 1981, 958–959; (b) Kim, H.-S.;
Kim, J.-W.; Kwon, S.-C.; Shim, S.-C.; Kim, T.-J. J. Organomet. Chem. 1997, 545/
546, 337–344; (c) Gu, Y.; Shi, F.; Deng, Y. J. Org. Chem. 2004, 69, 391–394.
33. The use of a polymer supported amine-Cu catalyst has been reported by: Jiang,
H.-F.; Wang, A.-Z.; Liu, H.-L.; Qi, C.-R. Eur. J. Org. Chem. 2008, 2309–2312.
34. Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc.
2007, 129, 12902–12903.
35. (a) Fournier, J.; Bruneau, C.; Dixneuf, P. H. Tetrahedron Lett. 1989, 30, 3981–
3982; (b) Joumier, J. M.; Fournier, J.; Bruneau, C.; Dixneuf, P. H. J. Chem. Soc.,
Perkin Trans. 1 1991, 3271–3274; (c) Bruneau, C.; Dixneuf, P. H. J. Mol. Catal.
1992, 74, 97–107.
1604 cmꢁ1
;
1H NMR (500 MHz, D2O): d, protons due to –CH2– group were not
observed because of fast exchange with D2O, 2.14 (s, CH3–); 13C{1H} NMR
(101 MHz, D2O,): d, 29.8 (CH3–), 52.9 (broad multiplet because of fast exchange
with D2O), 175.3 (CH2–C(O)O–), 201.1 (CH3–C(O)–CH2).
23. Carboxylation of cyclohexanone. In
a
Schlenk flask, 1-butyl, 3-
17.5 mmol), NaI (2.65 g,
36. Kayaki, Y.; Yamamoto, M.; Ikarija, T. J. Org. Chem 2007, 72, 647–649.
37. Note: most of data reported in the literature indicate that primary and
secondary propargylic alcohols do not undergo carboxylative cyclization
reaction. Recently Jiang et al.: Jiang, H.-F.; Wang, A.-Z.; Liu, H.-L.; Qi, C.-R.
Eur. J. Org. Chem. 2008, 2309–2312. reported the carboxylative cyclization of
several secondary alcohols in SC–CO2.
38. Note: Kayaki, H.; Ikariya, T. JP 2006137733, 2006; Chem. Abstr. 145, 27996;
These authors have used imidazol-2-ylidenes and imidazolin-2-ylidenes with
tBu, iPr, 2,4,6-trimethylphenyl N-substituents as well as some thiazol-2-
ylidenes. The internal alcohol 2-methyl-4-phenyl-3-butyn-2-ol gave the
corresponding cyclic carbonate in 75% yield under 100 bar CO2 pressure. Our
study was focused on the more reactive terminal propargylic alcohols.
39. (a) Poyatos, M.; McNamara, W.; Incarvito, C.; Clot, E.; Peris, E.; Crabtree, R. H.
Organometallics 2008, 27, 2128–2136; (b) Kelly, R. A.; Clavier, H.; Giudica, S.;
Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.;
Nolan, S. P. Organometallics 2008, 27, 202–210.
methylimidazolium-2-carboxylate (3.19 g,
17.7 mmol), and cyclohexanone (3 mL) were reacted in dry CH3CN (25 mL).
The reaction mixture was stirred under nitrogen atmosphere at room
temperature for 70 h, after which the solution was concentrated to dryness
in vacuo. The residual solid was washed with THF (3 ꢂ 15 mL) to remove
excess of cyclohexanone, then with acetone (3 ꢂ 15 mL). A light yellow solid
was obtained (1.79 g, 62.2% yield) characterized as sodium 2-oxo-cyclohexane-
1-carboxylate. Anal. Calcd for C7H9NaO3: Na, 14.01. Found: Na, 13.91. IR (Nujol,
KBr): 1573 and 1697 cmꢁ1 1H NMR (500 MHz, D2O): d, 1.54 (1H) and 1.61 (m,
.
1H) (C(4)–H2), 1.68 (m, 2H, C(5)H2), 2.12 (m, 1H) and 2.19 (m, 1H) (C(6)–H2),
2.38 (m, 1H) and 2.43 (m, 1H, C(3)H2), 3.26 (t, approximately 0.7 (C(1)H).
13C{1H} NMR (101 MHz, D2O): d, 22.64, 26.63, 31.10, 40.98, 61.06 (C1), 177.79
(–C(O)O–), 215.65 (–C(O)–).
24. Carboxylation of benzylcyanide. In a Schlenk flask were reacted, under nitrogen
atmosphere,
1-butyl,
3-methylimidazolium-2-carboxylate
(2.73 g,
14.98 mmol), NaI (2.32 g, 15.01 mmol), and benzylcyanide (1.85 mL,
15.79 mmol) in dry CH3CN (15 mL) at room temperature for 4 days. The
reaction mixture was dried in vacuo, and washed three times with CH3CN
(3 ꢂ 7 mL). A light yellow solid was obtained (1.74 g, yield 60%) characterized
as sodium 2-cyano, 2-phenylacetate salt. Anal. Calcd for C9H6NNaO2: Na, 12.55.
40. Note: yields in 4-methyl-5-methylen-4-phenyl-1,3-dioxolan-2-one (carbonate
12d) reported from other Authors with different catalysts were (Refs. 29–35 of
this Letter): 32% (Dixneuf et al., by using PnBu3: 100 °C, PCO = 50 bar, 20 h,
catalyst loading 8%), 51% (Inoue et al., by using K2CO3/CE, 802°C, PCO = 5 bar,
2
50 h, catalyst loading 25%), 45% (Deng et al., by using CuI/ionic liquid, 120 °C,
PCO = 10 bar, 8 h, catalyst loading 2%). The product was not obtained working
wit2h CuI-polymer supported catalyst in SC–CO2 (Jiang et al.).
Found: Na, 12.40. IR (Nujol, KBr): 1712, 1604 cmꢁ1 1H NMR (400 MHz, D2O,):
;
d, 7.27 (broad signal due to overlapping aromatic protons). 13C{1H} NMR
(101 MHz, H2O): d, 46.25 (C–H tertiary carbon), 119.94 (–CN), 127.82 (ortho-
Ph), 128.32 (para-Ph), 129.15 (meta-Ph), 132.79, (ipso-Ph), 170.8 (–C(O)O–).
25. Alder, R. W.; Allen, P. R.; Williams, S. J. J. C. S. Chem. Soc., Chem. Commun 1995,
1267–1268; Kim, Y.-J.; Streitweiser, A. J. Am. Chem. Soc. 2002, 124, 5757–5761.
26. The role played by the metal cations (Na+, K+) could be quite complex. It is
known that Group I cations can interact with organic substrates in organic
41. Note: it is worthy to note that Na2CO3 itself cannot be used in the direct
carboxylation of compounds with active hydrogen. To the best of our
knowledge in the scientific literature can be found only one example of
direct utilization of K2CO3 in the carboxylation of acetophenone with CO2 by
implementation of the mechanochemistry technique (Haruki, H. JP 55151532,
1980; Chem. Abstr. 1981, 94, 174894).