§ The value Dobs
49 cm21 for a O–O harmonic oscillator.
¶ Oxygenation of the Cu(
( (
16O–18O) = 47 cm21 closely matches Dcalc 16O–18O) =
I
) precursor of 1 does not yield a [Cu2(m-O)2]2+
complex, thus arguing against the possibility that the 625/595 cm21 features
are due to such a complex (which would also be diamagnetic and thus EPR
silent).
∑ EPR spectra recorded over a range of temperatures (2–65 K), microwave
powers (5.0 3 1025–0.8 mW), and reaction times (31–90 min.) contained
the same features as shown in Fig. 1b. The small low field feature adjacent
to the major rhombic signal is associated with the product of sample
decomposition (supporting information†).
** X-ray data for 5·1.5C7H8: C46.50H42O2P2Pd, MW = 801.14 g mol21
,
monoclinic, a = 9.2639(14), b = 23.168(4), c = 18.260(3) Å, b =
92.962(3)°, V = 3913.9(11) Å3, T = 173(2) K, P2(1)/n, Z = 4, m = 0.593
mm21, 25447 reflections, 6916 independent reflections [R(int) = 0.0562],
R1 = 0.0368, wR2 (for I > 2s(I)) = 0.0831, 484 parameters, 43 restraints.
tallographic data in .cif or other electronic format.
1 (a) Metal-Oxo and Metal-Peroxo Species in Catalytic Oxidations, ed. B.
Meunier, Springer: Berlin, 2000; (b) Biomimetic Oxidations Catalyzed
by Transition Metal Complexes, ed. B. Meunier, Imperial College Press:
London, 2000.
2 L. Que, Jr. and W. B. Tolman, Angew. Chem. Int. Ed., 2002, 41,
1114.
3 (a) L. M. Mirica, X. Ottensaelder and T. D. P. Stack, Chem. Rev., 2004,
104, 1013; (b) E. A. Lewis and W. B. Tolman, Chem. Rev., 2004, 104,
1047.
Scheme 1
4 (a) L. Que, Jr. and Y. Dong, Acc. Chem. Res., 1996, 29, 190; (b) L. Que,
Jr., J. Chem. Soc., Dalton Trans., 1997, 3933.
5 (a) S. Hikichi, M. Yoshizawa, Y. Sasakura, M. Akita and Y. Moro-oka,
J. Am. Chem. Soc., 1998, 120, 10567; (b) S. Hikichi, M. Yoshizawa, Y.
Sasakura, H. Komatsuzaki, Y. Moro-oka and M. Akita, Chem. Eur. J.,
2001, 7, 5012.
6 (a) B. S. Mandimutsira, J. L. Yamarik, T. C. Brunold, W. Gu, S. P.
Cramer and C. G. Riordan, J. Am. Chem. Soc., 2001, 123, 9194; (b) R.
Schenker, B. S. Manimutsira, C. G. Riordan and T. C. Brunold, J. Am.
Chem. Soc., 2002, 124, 13842.
7 S. Itoh, H. Bandoh, M. Nakagawa, S. Nagatomo, T. Kitagawa, K. D.
Karlin and S. Fukuzumi, J. Am. Chem. Soc., 2001, 123, 11168.
8 (a) P. R. Sharp, J. Chem. Soc., Dalton Trans., 2000, 2647; (b) J. J. Li,
W. Li and P. R. Sharp, Inorg. Chem., 1996, 35, 604.
9 (a) T. Hosokawa and S.-I. Murahashi, Acc. Chem. Res., 1990, 23, 49; (b)
P. L. Alsters, J. Boersma and G. v. Koten, Organometallics, 1993, 12,
1629; (c) T. Hosokawa, M. Takano and S.-I. Murahashi, J. Am. Chem.
Soc., 1996, 118, 3990.
Fig. 2 (a) Optical absorption spectra of a THF solution of 5 (dotted line) and
the product of addition of equimolar 4 (solid line). (b) Resonance Raman
spectrum of THF solution of 5-16O2 + 4 (solid line) and 5-18O2 + 4 (dotted
line).
excitation at l = 457.9 nm led to resonance enhancement of a peak
at 660 cm21 in the Raman spectrum that shifted to 631 cm21 when
5 prepared with 18O2 was used (Fig. 2b). On the basis of the
combined data, we postulate that the reaction of 4 with 5 produces
the diamagnetic bis(m-oxo)copper(III)palladium(II) complex 6.
Notably diagnostic for this formulation are the charge transfer
transition at lmax = 448 nm and a MMA(m-O)2 feature in the
resonance Raman spectrum.2,17 Further corroboration was provided
by DFT calculations on 6,† which yielded as an energy minimum a
C2 structure with parameters typical for bis(m-oxo)dimetal com-
plexes (e.g., Cu–O = 1.848 Å, Pd–O = 2.029 Å, Pd…Cu = 2.994
Å) and a frequency for a CuPd(m-O)2 rhomb mode of 594 cm21
(D18O = 26 cm21). The isotope shift is in good agreement with the
experimentally observed value, although the predicted frequency is
somewhat low. Further theoretical work on 6 is underway.
In sum, we have successfully prepared heterodinuclear bis(m-
oxo) complexes by combining mononuclear peroxo species with
reduced metal precursors. Both the CuNi and CuPd compounds are
highly reactive, as shown by their tendency to decompose rapidly
upon warming. Studies of their reactivity with exogeneous
substrates are underway, as are extensions of the synthetic
methodology to other heterometal combinations.
10 Of relevance are FeCuO2 species prepared as models of cytochrome c
oxidase: (a) R. A. Ghiladi, K. R. Hatwell, K. D. Karlin, H.-w. Huang, P.
Moënne-Loccoz, C. Krebs, B. H. Huynh, L. A. Marzilli, R. J. Cotter, S.
Kaderli and A. D. Zuberbühler, J. Am. Chem. Soc., 2001, 123, 6183; (b)
T. Chishiro, Y. Shimazaki, F. Tani, Y. Tachi, Y. Naruta, S. Karasawa,
S. Hayami and Y. Maeda, Angew. Chem. Int. Ed., 2003, 42, 2788.
11 (a) [PdGe(m-O)2]2+ complex: Z. T. Cygan, J. E. Bender IV, K. E. Litz,
J. W. Kampf and M. M. Banaszak-Holl, Organometallics, 2002, 21,
5373; (b) [PtGe(m-O)2]2+ complex: K. E. Litz, M. M. Banaszak-Holl, J.
W. Kampf and G. B. Carpenter, Inorg. Chem., 1998, 37, 6461.
12 D. J. E. Spencer, N. W. Aboelella, A. M. Reynolds, P. L. Holland and
W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 2108.
13 N. W. Aboelella, E. A. Lewis, A. M. Reynolds, W. W. Brennessel, C. J.
Cramer and W. B. Tolman, J. Am. Chem. Soc., 2002, 124, 10660.
14 A similar sequence has been used to prepare a LNi(m-O)2NiLA
compound: K. Fujita, R. Schenker, W. Gu, T. C. Brunold, S. P. Cramer
and C. G. Riordan, Inorg. Chem., 2004, 43, 3324.
15 Related strategies have been implemented. For example, see: (a) E. E.
Chufán and K. D. Karlin, J. Am. Chem. Soc., 2003, 125, 16160; (b) M.
Hunger, C. Limberg and P. Kircher, Organometallics, 2000, 19, 1044;
(c) M. S. Rau, C. M. Kertz, L. A. Mercando, G. L. Geoffroy and A. L.
Rheingold, J. Am. Chem . Soc., 1991, 113, 7420.
16 M. J. Baldwin, P. K. Ross, J. E. Pate, Z. Tyeklar, K. D. Karlin and E. I.
Solomon, J. Am. Chem. Soc., 1991, 113, 8671.
We thank the NIH (GM47365 to W.B.T.), the NSF (CHE-
0213260 to C.G.R., CHE-0203346 to C.J.C. and predoctoral
fellowship to N.W.A.), and Profs. J. Lipscomb and L. Que, Jr., for
access to EPR and Raman instrumentation, respectively.
17 (a) P. L. Holland, C. J. Cramer, E. C. Wilkinson, S. Mahapatra, K. R.
Rodgers, S. Itoh, M. Taki, S. Fukuzumi, L. Que, Jr. and W. B. Tolman,
J. Am. Chem. Soc., 2000, 122, 792; (b) M. J. Henson, P. Mukherjee, D.
E. Root, T. D. P. Stack and E. I. Solomon, J. Am. Chem. Soc., 1999, 121,
10332.
18 C. J. Nyman, C. E. Wymore and G. Wilkinson, J. Chem. Soc. (A), 1968,
561.
Notes and references
‡ Reliable spectrophotometric titration data with which to confirm a 1 : 1
reaction stoichiometry were unavailable because of the slow rate of reaction
at 280 °C and competing decomposition at higher temperatures.
19 D. J. E. Spencer, A. M. Reynolds, P. L. Holland, B. A. Jazdzewski, C.
Duboc-Toia, L. L. Pape, S. Yokota, Y. Tachi, S. Itoh and W. B. Tolman,
Inorg. Chem., 2002, 41, 6307.
C h e m . C o m m u n . , 2 0 0 4 , 1 7 1 6 – 1 7 1 7
1717