Cycloaddition of Propargylic Amines and CO2 by Ni@Pd Nanoclusters Confned Within Metal–…
24. Corma A, Garcia H, Llabres I, Xamena FX (2010) Chem Rev
4 Conclusions
110:4606–4655
25. Wang JL, Wang C, Lin W (2012) ACS Catal 2:2630–2640
26. Schröder F, Esken D, Cokoja M, Berg MWE, Lebedev OI, Van
Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret
B, Fischer RA (2008) J Am Chem Soc 130:6119–6130
27. Vaidhyanathan R, Bradshaw D, Rebilly JN, Barrio JP, Gould
JA, Berry NG, Rosseinsky MJ (2006) Angew Chem Int Ed
45:6495–6499
In the present paper, we expanded a simple that is highly
efcient, obvious light activated and Ni@Pd/ZnGlu, green
synthetic method in the case of the cyclization of propar-
gylic amines to carbon dioxide for present 2-oxazolidinones.
This visible light and Ni@Pd/ZnGlu compound prepares a
simple as well as straight path for chemical stabilization of
CO2. The conditions of reaction show a vast area of func-
tional group to tolerance. This procedure shows proper atom
economy (the spent Ni@Pd/ZnGlu MNPs) may be recycled
and also reused for mediating task. They have to be helpful
for understanding the advantageous mixing of the character-
istics of homogeneous along with heterogeneous catalysis
and also the expansion of simple catalytic methods. How-
ever, this expansion is important in the case of ecological
and economical conducts and can assist for minimizing the
ecology carbon trace.
28. Kathalikkattil AC, Bisht KK, Aliaga-Alcalde N, Suresh E (2011)
Cryst Growth Des 11:1631–1641
29. Bisht KK, Parmar B, Rachuri Y, Kathalikkattil AC, Suresh E
(2015) CrystEngComm 17:5341–5356
30. Ingleson MJ, Barrio JP, Bacsa J, Dickinson C, Park H, Rosseinsky
MJ (2008) Chem Commun 11:1287–1289
31. Kathalikkattil AC, Bisht KK, Subramanian PS, Suresh E (2010)
Polyhedron 29:1801–1809
32. Qi C, Ye J, Zeng W, Jiang H (2010) Adv Synth Catal
352:1925–1933
33. Roshan KR, Kathalikkattil AC, Tharun J, Kim DW, Won YS, Park
DW (2014) Dalton Trans 43:2023–2031
34. Roshan KR, Jose T, Kim D, Cherian KA, Park DW (2014) Catal
Sci Technol 4:963–970
35. Tharun J, Roshan KR, Kathalikkattil AC, Kang DH, Ryu HM,
Park DW (2014) RSC Adv 4:41266–41270
36. Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G,
Fischer RA (2010) Eur J Inorg Chem 24:3701–3714
37. Cheon YE, Suh MP (2008) Chem Eur J 14:3961–3967
38. Fang Y, Wang E (2013) Nanoscale 5:1843–1848
39. de Pedro ZM, Diaz E, Mohedano AF, Casas JA, Rodriguez JJ
(2011) Appl Catal B Environ 103:128–135
References
1. Honda M, Tamura M, Nakao K, Suzuki K, Nakagawa Y, Tom-
ishige K (2014) ACS Catal 4:1893–1896
2. Song QW, Chen WQ, Ma R, Yu A, Li QY, Chang Y, He LN
(2015) Chemsuschem 8:821–827
40. Pérez-Lorenzo M (2011) J Phys Chem Lett 3:167–174
41. Hildebrand H, Mackenzie K, Kopinke FD (2009) Environ Sci
Technol 43:3254–3259
3. Vara BA, Struble TJ, Wang W, Dobish MC, Johnston JN (2015) J
Am Chem Soc 137:7302–7305
4. Darensbourg DJ, Moncada AI, Choi W, Reibenspies JH (2008) J
Am Chem Soc 130:6523–6533
42. Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237–243
43. Metin O, Ho SF, Alp C, Can H, Mankin MN, Gultekin MS, Chi
M, Sun S (2013) Nano Res 6:10–18
5. Yoshida M, Hara N, Okuyama S (2000) Chem Commun
36:151–152
44. Abdullaeua Z, Omurzak E, Iwamoto C, Ganapathy HS,
Sulaimankulova S, Chen L, Mashimo T (2012) Carbon
50:1776–1785
6. Wesselbaum S, vomStein T, Klankermayer J, Leitner W (2012)
Angew Chem Int Ed 51:7499–7502
7. He JM, Sun Y, Han B (2013) Angew Chem Int Ed 52:9620–9633
8. Tundo P, Selva M (2002) Acc Chem Res 35:706–716
9. Honda M, Tamura M, Nakagawa Y, Tomishige K (2014) Catal Sci
Technol 4:2830–2845
45. Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Appl Catal
B Environ 162:372–380
46. Maitya S, Eswaramoorthy M (2016) J Mater Chem A 4:3233–3237
47. Lai Q, Zhang C, Holles JH (2016) Appl Catal A: Gen 528:1–13
48. Chen H, Zhang S, Zhao Z, Liu M, Zhang Q (2019) Process Chem
31:571–579
10. Liu AH, Li YN, He LN (2012) Pure Appl Chem 84:581–602
11. Tanaka R, Yamashita M, Nozaki K (2009) J Am Chem Soc
131:14168–14169
49. Yuan D, Zhang C, Tang S, Li X, Tang J, Rao Y, Wang Z, Zhang
Q (2019) Water Res 163:114861
12. Pulla S, Felton CM, Ramidi P, Gartia Y, Ali N, Nasini UB, Ghosh
A (2013) J CO2 Util 2:49–57.
50. Tang S, Li N, Yuan D, Tang J, Li X, Zhang C, Rao Y (2019)
Chemosphere 234:658–667
13. Maggi R, Bertolotti C, Orlandini E, Oro C, Sartori G, Selva M
(2007) Tetrahedron Lett 48:2131–2134
51. Shao P, Tian J, Yang F, Duan X, Gao S, Shi W, Luo X, Cui F, Luo
S, Wang S (2018) Adv Funct Mater 28:1705295
52. Kathalikkattil AC, Babu R, Roshan RK, Lee H, Kim H, Tharun J,
Suresh E, Park DW (2015) J Mater Chem A 3:22636–22647
53. Yoshida M, Mizuguchi T, Shishido K (2012) Chem Eur J
18:15578–15581
14. Kayaki Y, Yamamoto M, Suzuki T, Ikariya T (2006) Green Chem
8:1019–1021
15. Feroci M, Orsini M, Sotgiu G, Rossi L, Inesi A (2005) J Org Chem
70:7795–7798
16. Aurelio L, Brownlee RTC, Hughes AB (2004) Chem Rev
104:5823–5846
54. Hase S, Kayaki Y, Ikariya T (2013) Organometallics
32:5285–5288
17. Chung CWY, Toy PH (2004) Tetrahedron Asymmetry 15:387–399
18. Mukhtar TA, Wright GD (2005) Chem Rev 105:529–542
19. He X, Deng F, Shen T, Yang L, Chen D, Luo J, Luo X, Min X,
Wang F (2019) J Colloid Interface Sci 539:223–234
20. Suh MP, Park HJ, Prasad TK, Lim DW (2012) Chem. Rev.
112:782–835
55. Wang MY, Song QW, Ma R, Xie JN, He LN (2016) Green Chem
18:282–287
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional afliations.
21. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED,
Herm ZR, Bae TH, Long JR (2012) Chem Rev 112:724–781
22. Yoon M, Srirambalaji R, Kim K (2012) Chem Rev 112:1196–1231
23. Cui Y, Yue Y, Qian G, Chen B (2012) Chem Rev 112:1126–1162
1 3