2 F. Jamali, R. Lovlin and G. Aberg, Chirality, 1997, 9, 29–31.
3 C. Sevoz, C. Rousselle, E. Benoıt and T. Buronfosse, Xenobiotica,
1999, 29, 1007–1016.
4 R. D. Knihinicki, R. O. Day and K. M. Williams, Biochem.
Pharmacol., 1991, 42, 1905–1911.
5 T. A. Baillie, W. J. Adams, D. G. Kaiser, L. S. Olanoff,
G. W. Halstead, H. Harpootlian and G. J. Van Giessen,
J. Pharmacol. Exp. Thera., 1989, 249, 517–523.
6 W. J. Wechter, D. G. Loughhead, R. J. Reischer, G. J. Vangiessen
and D. G. Kaiser, Biochem. Biophys. Res. Commun., 1974, 61,
833–837.
7 Y. Nakamura, T. Yamaguchi, S. Takahashi, S. Hashimoto,
K. Iwantani and Y. Nakagawa, Optical isomerization mechanism
of R(ꢁ)-hydratropic acid derivatives, in 12th Symposium on Drug
Metabolism and Action, Pharmaceutical Society of Japan,
Kanazawa, 1980, s-1.
Fig. 3 Binding of R-fenoprofenoyl-CoA 7 modelled by docking into
the active site of the AMACR homologue from M. tuberculosis.21
8 E. Benoit, P. Delatour, L. Olivier and J. Caldwell, Biochem.
Pharmacol., 1995, 49, 1717–1720.
The structures of MCR complexed with S- or R-ibuprofenoyl-
CoA 221 were used as starting models. Binding of the CoA
moiety and chiral centre are identical for all models, regardless
of their stereochemical configuration, e.g. R-fenoprofenoyl-
CoA 7 (Fig. 3). In each case, the side-chain projects
towards the methionine-rich surface.21 In all but one case
(M198/F194), the predicted side-chain binding residues in
AMACR are identical to those in MCR (ESI,w Fig. S1).
Substrates with meta-substituted aromatic rings (e.g. 7 and 9)
could have an additional interactions between them and the
side of the active site funnel and this may account for their
tighter binding or conversion with higher catalytic efficiency.
In summary, a panel of structurally diverse 2-APA-CoA
esters were efficiently converted by AMACR. Chiral inversion
probably occurs in both directions, with stereoselective
formation of the CoA ester accounting for the specific R- to
S- inversion in vivo.2–6,8–11 AMACR is highly conserved across
species and the pathway is probably common in mammals and
other species. Chemoprotective effects of 2-APAs have been
previously reported, but their effects were ascribed to binding
to p75NTR or COX.26–28 Reduction of AMACR activity is
proposed as a treatment for prostate and other cancers and
inhibition of activity may be an additional mechanism for the
chemopreventive effects of 2-APAs. Use of the R-2-APA
enantiomer to inhibit AMACR, rather than administering a
racemic mixture, would be an example of chiral switching29 to
extend the usefulness of a known drug.
9 V. Wso
M. Flieger, Chirality, 2001, 13, 754–759.
10 D. D. Leipold, D. Kantoci, D. Murray, D. D. Quiggle and
W. J. Wechter, Chirality, 2004, 16, 379–387.
11 S. Iwakawa, H. Spahn, L. Z. Benet and E. T. Lin, Drug Metab.
Disposit., 1991, 19, 853–857.
12 R. Brugger, B. Garcia Alia, C. Reichel, R. Waibel, S. Menzel,
K. Brune and G. Geisslinger, Biochem. Pharmacol., 1996, 52,
1007–1013.
13 C. Sevoz, E. Benoıt and T. Buronfosse, Drug Metab. Disposit.,
2000, 28, 398–402.
14 W. R. Shieh and C. S. Chen, J. Biol. Chem., 1993, 268,
3487–3493.
15 C. Reichel, R. Brugger, H. Bang, G. Geisslinger and K. Brune,
Mol. Pharmacol., 1997, 51, 576–582.
16 M. D. Lloyd, D. J. Darley, A. S. Wierzbicki and M. D. Threadgill,
FEBS J., 2008, 275, 1089–1102.
17 D. J. Darley, D. S. Butler, S. J. Prideaux, T. W. Thornton,
A. D. Wilson, T. J. Woodman, M. D. Threadgill and
M. D. Lloyd, Org. Biomol. Chem., 2009, 7, 543–552.
18 J. Luo, S. Zha, W. R. Gage, T. A. Dunn, J. L. Hicks, C. J. Bennett,
C. N. Ewing, E. A. Platz, S. Ferdinandusse, R. J. Wanders,
J. M. Trent, W. B. Isaacs and A. M. De Marzo, Cancer Res.,
2002, 62, 2220–2226.
19 S. Zha, S. Ferdinandusse, S. Denis, R. J. Wanders, C. M. Ewing,
J. Luo, A. M. De Marzo and W. B. Isaacs, Cancer Res., 2003, 63,
7365–7376.
20 A. J. Carnell, I. Hale, S. Denis, R. J. A. Wanders, W. B. Isaacs,
B. A. Wilson and S. Ferdinandusse, J. Med. Chem., 2007, 50,
2700–2707.
21 P. Bhaumik, W. Schmitz, A. Hassinen, J. K. Hiltunen,
E. Conzelmann and R. K. Wierenga, J. Mol. Biol., 2007, 367,
1145–1161.
22 N. J. Kershaw, M. Mukherji, C. H. MacKinnon, T. D.
W. Claridge, B. Odell, A. S. Wierzbicki, M. D. Lloyd and
C. J. Schofield, Bioorg. Med. Chem. Lett., 2001, 11,
2545–2548.
23 F. A. Sattar, D. J. Darley, F. Politano, T. J. Woodman,
M. D. Threadgill and M. D. Lloyd, Chem. Commun., 2010, 46,
3348–3350.
24 A. Cornish-Bowden and R. Eisenthal, Biochem. J., 1974, 139,
721–730.
25 R. Eisenthal and A. Cornish-Bowden, Biochem. J., 1974, 139,
715–720.
l, R. Kral, L. Skalova, B. Szotakova, F. Trejtnar and
´ ´ ´ ´ ´ ´
This work was supported by Cancer Research UK. Part of
this work was performed for a Nuffield Summer Student
Bursary (TJH), a Nuffield Science Bursary (GRS) and a
Bath-Shandong Pharmacy
& Pharmacology Scholarship
project (PJ). This work is dedicated to Mr David K. Lloyd
(1936 to 2010). TJW, PJW, AST, MDT and MDL are
members of the Cancer Research @ Bath network.
Notes and references
26 P. Andrews, X. Zhao, J. Allen, F. M. Li and M. Chang, Cancer
Chemother. Pharmacol., 2008, 61, 203–214.
27 W. J. Wechter, D. D. Leipold, E. D. Murray, D. Quiggle,
J. D. McCracken, R. S. Barrios and N. M. Greenberg, Cancer
Res., 2000, 60, 2203–2208.
28 W. J. Wechter and J. D. McCracken, US application 5955504(A),
WO 96/28148, 1995 (Priority date 13th March 1995).
29 I. Agranat, H. Caner and A. Caldwell, Nat. Rev. Drug Discovery,
2002, 1, 753–768.
z Abbreviations used: AMACR 1A, a-methylacyl-CoA racemase,
splice variant 1A; 2-APA, 2-arylpropionic acid; CoA, coenzyme A;
COX, cyclooxygenase; MCR, a-methylacyl-CoA racemase
(M. tuberculosis).
1 J. A. Mitchell, P. Akarasereenont, C. Thiemermann, R. J. Flower
and J. R. Vane, Proc. Natl. Acad. Sci. U. S. A., 1993, 90,
11693–11697.
c
7334 Chem. Commun., 2011, 47, 7332–7334
This journal is The Royal Society of Chemistry 2011