M. Yamashita et al. / Tetrahedron: Asymmetry 15 (2004) 2315–2317
2317
Tanaka, T.; Maezaki, N.; Ohta, S. J. Org. Chem. 2003, 68,
1216–1224.
3. Conclusion
3. Recent journals. (a) Olszewska, T.; Gdaniec, M.; Po-lonski,
T. J. Org. Chem. 2004, 69, 1248–1255; (b) Delogu, G.;
Dettori, M. A.; Patti, A.; Pedotti, S.; Forni, A.; Casalone,
G. Tetrahedron: Asymmetry 2003, 14, 2467–2474; (c)
Acherar, S.; Audran, G.; Vanthuyne, N.; Monti, H.
Tetrahedron: Asymmetry 2003, 14, 2413–2418; (d) Pham,
V. C.; Jossang, A.; Chiaroni, A.; Sevenet, T.; Bodo, B.
Tetrahedron Lett. 2002, 43, 7565–7568; (e) Eguchi, T.;
Kobayashi, K.; Uekusa, H.; Ohashi, Y.; Mizoue, K.;
Matsushima, Y.; Kakinuma, K. Org. Lett. 2002, 4, 3383–
3386; (f) Cheung, K.-M.; Coles, S. J.; Hursthouse, M. B.;
Johnson, N. I.; Shoolingin-Jordan, P. M. Angew. Chem.,
Int. Ed. 2002, 41, 1198–1202; (g) Rozenberg, V.; Danilova,
T.; Sergeeva, E.; Vorontsov, E.; Starikova, Z.; Korlyukov,
A.; Hopf, H. Eur. J. Org. Chem. 2002, 3, 468–477; (h)
Matsumoto, T.; Konegawa, T.; Nakamura, T.; Suzuki, K.
Synlett 2002, 122–124; (i) Suchy, M.; Kutschy, P.; Monde,
K.; Goto, H.; Harada, N.; Takasugi, M.; Dzurilla, M.;
Balentova, E. J. Org. Chem. 2001, 66, 3940–3947; (j) Boyd,
D. R.; Sharma, N. D.; Barr, S. A.; Carroll, J. G.;
Mackerracher, D.; Malone, J. F. J. Chem. Soc., Perkin
Trans. 1 2000, 3397–3405; (k) Paruch, K.; Katz, T. J.;
Incarvito, C.; Lam, K.-C.; Rhatigan, B.; Rheingold, A. L.
J. Org. Chem. 2000, 65, 7602–7608; (l) Thongpanchang, T.;
Paruch, K.; Karz, T. J.; Rheingold, A. L.; Lam, K.-C.;
Liable-Sands, L. J. Org. Chem. 2000, 65, 1850–1856.
4. (a) Varga, Z.; Bajza, I.; Batta, G.; Liptak, A. Tetrahedron
Lett. 2001, 42, 5283–5286; (b) Jacobs, R. T.; Feutrill, G. I.;
Meinwald, J. J. Org. Chem. 1990, 55, 4051–4062; (c) Tietze,
L. F.; Henke, S.; Baertels, C. Tetrahedron 1988, 44, 7145–
7153; (d) Saito, Y.; Watanabe, T.; Hashimoto, H.; Yo-
shimura, J. Carbohydr. Res. 1987, 169, 171–188; (e)
Hutchins, R. O.; Milewski, C. A.; Maryanoff, B. E. Org.
Synth. 1973, 53, 107–110; (f) Hutchins, R. O.; Kandasamy,
D.; Maryanoff, C. A.; Maryanoff, B. E. J. Org. Chem. 1977,
42, 82–91; (g) Hutchins, R. O.; Maryanoff, B. E.; Milewski,
C. A. J. Chem. Soc., Chem. Commun. 1971, 23, 1097–
1098.
In conclusion, we have separated racemic acetate ( )-3
by HPLC on chiral stationary phases to each acetate
(ꢀ)- and (þ)-3. The absolute configuration of the crys-
talline (ꢀ)-4 derived from the enantiopure (ꢀ)-2 with
(ꢀ)-camphanic chloride was determined by X-ray
crystallography (CCDC No. 241976). The triols
(ꢀ)- and (þ)-2 were derived to optically active (ꢀ)- and
(þ)-linderol A 1, respectively, without affecting their
stereogenic centers. As natural (ꢀ)-1 was derived from
(ꢀ)-2, its absolute configuration was elucidated to be
5aR,6R,9R,9aS.
Acknowledgements
The authors thank Professor Yutaka Sashida (Tokyo
University of Pharmacy and Life Science) for providing
the spectral data of natural linderol A. This research was
financially supported in part by the Frontier Research
Program of the Ministry of Education, Culture, Sports,
Science and Technology of Japan, and a Grant-in-Aid
for the promotion of the advancement of education and
research in graduate schools in Subsidies for ordinary
expenses of private schools from the Promotion and
Mutual Aid Corporation for Private Schools of Japan.
References and notes
1. Mimaki, Y.; Kameyama, A.; Sashida, Y.; Miyata, Y.; Fujii,
A. Chem. Pharm. Bull. 1995, 43, 893–895.
2. (a) Yamashita, M.; Ohta, N.; Kawasaki, I.; Ohta, S. Org.
Lett. 2001, 3, 1359–1362; (b) Yamashita, M.; Ohta, N.;
Shimizu, T.; Matsumoto, K.; Matsuura, Y.; Kawasaki, I.;
5. Concentration did not appear in lit.1