4630 J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 18
Brief Articles
leukemia: a Southwest Oncology Group study. Blood 1999, 94,
1086-1099.
(6) Trock, B. J .; Leonessa, F.; Clarke, R. Multidrug resistance in
breast cancer: a meta-analysis of MDR1/gp170 expression and
its possible functional significance. J . Natl. Cancer Inst. 1997,
89, 917-931.
(7) Baekelandt, M. M.; Holm, R.; Nesland, J . M.; Trope, C. G.;
Kristensen, G. B. P-glycoprotein expression is a marker for
chemotherapy resistance and prognosis in advanced ovarian
cancer. Anticancer Res. 2000, 20, 1061-1067.
(8) Campling, B. G.; Young, L. C.; Baer, K. A.; Lam, Y. M., Deeley,
R. G.; Cole, S. P.; Gerlach, J . H. Expression of the MRP and
MDR1 multidrug resistance genes in small cell lung cancer. Clin.
Cancer Res. 1997, 3, 115-122.
(9) Teodori, E.; Dei, S.; Scapecchi, S.; Gualtieri, F. The medicinal
chemistry of multidrug resistance (MDR) reversing drugs.
Farmaco 2002, 57, 385-415 (review).
(10) Pennock, G. D.; Dalton, W. S.; Roeske, W. R.; Appleton, C. P.;
Mosley, K.; Plezia, P.; Miller, T. P.; Salmon, S. E. Systemic toxic
effects associated with high-dose verapamil infusion and che-
motherapy administration, J . Natl. Cancer Inst. 1991, 83, 105-
110.
(11) Fukazawa, N.; Odate, M.; Suzuki, T.; Otsuka, K.; Tsuruo, T.;
Sato, W. (Mitsui Toatsu Chemicals, Inc., Tokyo, J apan). Novel
heterocyclic compounds and anti-cancer-drug reinforcing agents
containing them as effective components. EP 0 363 212, October
6, 1988.
(12) Hait, W. N.; Aftab, D. T. Rational design and pre-clinical
pharmacology of drugs for reversing multidrug resistance.
Biochem. Pharmacol. 1992, 43, 103-107.
(13) Ramu, A.; Ramu, N. Reversal of multidrug resistance by
phenothiazines and structurally related compounds. Cancer
Chemother. Pharmacol. 1992, 30, 165-173.
(14) Ford, J . M.; Hait, W. N. Pharmacology of drugs that alter
multidrug resistance in cancer. Pharm. Rev. 1990, 42, 155-199.
(15) Sato, W.; Fukazawa, N.; Nakanishi, O.; Baba, M.; Suzuki, T.;
Yano, O.; Naito, M.; Tsuruo, T. Reversal of multidrug resistance
by a novel quinoline derivative, MS-209. Cancer Chemother.
Pharmacol. 1995, 35, 271-277.
(16) Monkovic, I.; Wang, L. (Bristol-Myers Squibb Company, New
York) Dibenz[b,f]oxazepin-11(10H)-ones for Multidrug Resis-
tance Reversing Agents. U.S. Patent 5,173,486, December 22,
1992.
(17) Robert, J .; J arry, C. Multidrug Resistance Reversal Agents. J .
Med. Chem. 2003, 46, 4805-4817.
(18) Barth, B.; Dierich, M.; Heinisch, G.; J enny, V.; Matuszczak, B.;
Mereiter, K.; Planer, R.; Scho¨pf, I.; Stoiber, H.; Traugott, T.;
v. Aufschnaiter, P. Pyridazino[3,4-b][1,5]benzoxazepin-5(6H)-
ones: Synthesis and biological evaluation. Antiviral Chem.
Chemother. 1996, 7, 300-312.
(19) (a) Belcher, R.; Stacey, M.; Sykes, A.; Tatlow, J . C. Trifluoro-
methylquinoline derivatives. J . Chem. Soc. 1954, 3846-3851.
(b) Tordeux, M.; Langlois, B.; Wakselman, C. Reactions of
trifluoromethyl bromide and related halides. Part 10. Perfluo-
roalkylation of aromatic compounds induced by sulfur dioxide
radical anion precursors. J . Chem. Soc., Perkin Trans. 1 1990,
2293-2299. (c) Kimura, M.; Kuroki, N.; Konishi, K. Metal
complex (1:2) dyes. Kogyo Kagaku Zasshi 1959, 62, 227-231;
Chem. Abstr. 1962, 57, 989.
acetate/ethanol ) 10/1; eluent 2, ethyl acetate) followed by
recrystallization from diisopropyl ether to give 11% yield of
colorless crystals: mp 156-159 °C; IR (KBr) 1662 cm-1 1H
;
NMR (CDCl3) δ 7.97 (s, 1 H, H-4), 7.79 (“s”, 1 H), 7.57-7.52
(m, 2 H), 7.41-7.12 (m, 10 H) (H-7, H-8, H-10, phenyl-H),
4.22-4.14 (m, 4 H, 2 × piperazine-CH2), 2.42-2.29 (m, 9 H, 2
× piperazine-CH2, 2 × N-CH2, CH), 2.04-1.84 (m, 2 H, CH2).
Anal. (C32H29ClF3N5O2) C, H, N.
In Vitr o Activity. The human HeLa S3 cell line (HeLa-
WT) and the multidrug resistant MDR-overexpressing HeLa
cell line (HeLa-MDR1) were kindly provided by J . Hofman
(Institute of Medical Chemistry and Biochemistry, Medical
University Hospital of Innsbruck).
Both cell lines were grown in RPMI 1640 (Biochrom, Berlin,
Germany) supplemented with 2 mM glutamine (Biochrom),
100 U/mL penicillin (Biochemie GmbH, Vienna, Austria), 100
µg/mL streptomycin (Gru¨nenthal GmbH, Stolberg, Austria),
and 10% fetal calf serum (Life Technologies, Paisley, Scotland)
at 37 °C in 5%CO2/95% air. Logarithmically growing cells were
trypsinized, washed with phosphate buffered saline, resus-
pended in culture medium at 2 × 105 cells/mL, and plated in
triplicate in flat bottom microtiter plates (Falcon, Becton
Dickinson, Franklin Lakes, NY). Various concentrations of
vincristine sulfate (VCR, 0-10 ng/mL, Vincristin, Pharmacia
Austria, Vienna, Austria) were added 30 min thereafter. 7a -d
and verapamil (Institute of Pharmacy, University Innsbruck)
were prepared as stock solutions in DMSO (Sigma-Aldrich,
Vienna, Austria) and were adjusted to the final concentrations
(1-100 µM) with culture medium. The concentration of DMSO
did not exceed 0.1% (v/v). One hour after the addition of VCR,
the solutions of the compounds were added and continuously
exposed for 72 h. For the last 12-16 h of culture, cells were
pulsed with 2 µCi of 3[H]thymidine (40-60 Ci/mmol, Amer-
sham, Arlington Heights, IL) and harvested using a semiau-
3
tomated device and [H]thymidine uptake was measured in a
liquid scintillation counter (Beckman LS 1801, Galway, Ire-
land). The paired Student’s t-test was used to calculate
statistical differences. Results are shown as mean proliferation
( SE. Proliferation in the absence of all compounds was set
at 100%.
Su p p or tin g In for m a tion Ava ila ble: General remarks,
synthesis, and analytical data for 1-5. This material is
Refer en ces
(1) Gottesmann, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance
in cancer: role of ATP-dependent transporters. Nat. Rev. 2002,
2, 48-58 (review).
(2) J uliano, R. L.; Ling, V. A surface glycoprotein modulating drug
permeability in Chinese hamster ovary cell mutants. Biochim.
Biophys. Acta 1976, 455, 152-162.
(20) Atkinson, J .; Morand, P.; Arnason, J . T.; Niemeyer, H. M.; Bravo,
H. R. Analogs of the cyclic hydroxamic acid 2,4-dihydroxy-7-
methoxy-2H-1,4-benzoxazin-3-one (DIMBOA): decomposition to
benzoxazolinones and reaction with â-mercaptoethanol. J . Org.
Chem. 1991, 56, 1788-1800.
(21) Pettit, M. R.; Tatlow, J . C. 8-Hydroxy-5-trifluoromethylquinoline.
J . Chem. Soc. 1954, 3852-3854.
(22) Mokrosz, J . L.; Bojarski, A. J .; Mackowiak, M.; Bielecka, Z.;
Boksa, J . Structure-activity relationship studies of CNS agents.
Part 10: 1-aryl-2-[3-(4-aryl-1-piperazinyl)propyl]-1,4-dihydro-
3(2H)-isoquinolinones: two modes of the interaction with the
5-HT1A receptor site. Pharmazie 1994, 49, 328-333.
(3) Deeley, R. G.; Cole, S. P. Function, evolution and structure of
multidrug resistance protein (MRP). Semin. Cancer Biol. 1997,
8, 193-204.
(4) Bell, D. R.; Trent, J . M.; Willard, H. F.; Riordan, J . R.; Ling, V.
Chromosomal localization of human P-glycoprotein gene se-
quences. Cancer Genet. Cytogenet. 1987, 25, 141-148.
(5) Leith, C. P.; Kopecky, K. J .; Chen, I. M.; Eijdems, L.; Slovak,
M. L.; McConnell, T. S.; Head, D. R.; Weick, J .; Grever, M. R.;
Appelbaum, F. R.; Willman, C. L. Frequency and clinical
significance of the expression of the multidrug resistance
proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid
J M040803N